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Prologue
Just over a quarter of a century ago, for seven consecutive days I sat down and 

typed from 8:30 am until midnight, with just an hour for lunch, and ever since have 
described this book as “having been written in a week.”

Not entirely honest, because there were loose ends still to be tied up, and Chap
ter 16 was written just before the book appeared, while Chapter 13 was largely 
copied from a paper, “Hackenbush, Welter and Prune”, that had been written a 
year earlier. But also not entirely dishonest.

Why the rush? Because ONAG, as the book is familiarly known, was getting 
in the way of writing Winning Ways (WW). Now that both books are happily being 
republished by A K Peters, Onagers (a word that also means ‘Wild Asses”!) can 
be told just how it came about before they surrender themselves to pure pleasure 
(as “Onag” means in Hebrew!).

A few years previously, Elwyn Berlekamp, Richard Guy and I had agreed to 
write a book on mathematical games, by which at that time we meant the Nim-like 
theory developed independently by Roland Sprague and Peter Michael Grundy 
for sums of impartial games—those for which the two players have exactly the 
same legal moves.

I had long intended to see what would become of the theory when this re
striction was dropped, but only got around to doing so when the then British Go 
Champion became a member of the Cambridge University Pure Mathematics 
Department. Astonishingly, it was the resulting attempt to understand “Go” that 
led to the discovery of the Surreal Numbers! This happened because the typical 
“Go” endgame was visibly a sum of games in the sense of this book, making 
it clear that this notion was worthy of deep study in its own right. The Surreal 
Numbers then emerged as the simplest domain to which it applies!

However, their theory rapidly burgeoned in ways that made it inappropriate for 
the book that later became Winning Ways. A busy term was approaching, and it 
seemed that this “transfinite” material just had to be got out of the way before that 
term started if Winning Ways was ever to be published. So I sat down for that week 
and wrote this book, and then confessed the fact to my co-authors.
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vi PROLOGUE

The most surprising immediate result was a threat of legal action from Elwyn 
Berlekamp! But somehow we must have patched this up, because both ONAG 
and WW appeared in the next few years, and we remain good friends.

In fact, the Surreal Numbers “surfaced” before ONAG appeared, partly through 
my 1970 lectures at Cambridge and Cal. Tech., but mostly through the wide 
circulation of Donald Knuth’s little book, Surreal Numbers. I am very grateful 
to Knuth for inventing this name—the original version of ONAG said “Because 
of the generality of this Class, we shall simply describe its members as numbers, 
without adding any restricting adjective.” “Surreal Numbers” is much better!

I am very happy and grateful that A.K. Peters have agreed to publish millennial 
editions of both this book and Winning Ways.

Ariel Jaffee and Kathryn Maier were responsible for handling the changes to 
this edition. This is also the place to acknowledge Richard Guy’s considerable 
contributions to the original edition. In particular, he designed and drew a number 
of the original figures and computed, or recomputed several of the tables.

I have called this a Prologue rather than a Preface because it is usually under
stood that the Preface to a later edition of a book should contain a description 
of the changes in the book and its subject since its first edition. Some of these 
functions are addressed in the Epilogue.

John H. Conway



Preface
This book was written to bring to light a relation between two of its author’s 

favourite subjects — the theories of the transfinite numbers and mathematical 
games. A few connections between these have been known for some time, but 
appears to be a new observation that we obtain a theory at once simpler and more 
extensive than Dedekind’s theory of the real numbers just by defining numbers as 
the strengths of positions in certain games. When we do this the usual properties 
of order and arithmetic operations follow almost immediately from definitions 
that are naturally suggested, so that it was quite and amusing exercise to write the 
zeroth part of the book as if these definitions had arisen instead from an attempt 
to generalise Dedekind’s construction!

However, we suspect that there will be many readers who are more interested in 
playing games than philosophising about numbers. For these readers we offer the 
following words of advice, Start reading Chapter 7, on playing several games at 
once, and find an interested friend with whom to play a few games of the domino

game described there. In this it’s easy to see why I I andEL give Left one and
two moves advantage respectively—when you feel you vaguely understand why

gives him just half of a move’s advantage, you might like to read Chapter 0, 
which explains how the simplest numbers arise. You should then find no difficulty 
in reading the rest of the book without knowing any more about numbers than 
that “ordinals” are a certain kind of (usually infinite) whole number, and that the 
Author has strange idiosyncracies which make him use capital letters for certain 
very large infinite collections.

Many friends have helped me write this book, often without being aware of the 
fact. I owe an especial debt to Elwyn Berlekamp and Richard Guy, with whom I am 
currently preparing a more extended book on mathematical games which should

Yll



v ill PREFACE

overlap this one in several places. The book would never had appeared without the 
repeated gentle proddings that came from Anthony Watkinson of Academic Press; 
it would have contained many errors were it not for the careful reading of Paul 
Cohn as editor, and the quality of the printing and layout could never have been so 
high without the detailed attentions of Ron Hitchings and the staff of the printers at 
Page Bros of Norwich. Others whose comments have affected more than one page 
are Mike Christie, Aviezri Fraenkel, Mike Guy, Peter Johnston, Donald Knuth and 
Simon Norton. The varied nature of the advice they gave is neatly encapsulated 
in the following lines from Bunyan’s Apology for his Book (Pilgrim’s Progress):

Some said ‘John, print it’; others said, ‘Not so.’
Some said ‘It might do good’; others said, ‘No.’

October 1975 J.H.C.
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ZEROTH PART 

ON NUMBERS . .

A Hair, they say, divides the False and True;
Yes; and a single A lif were the clue,

Could you but find it—to the Treasure-house,
Andperadventure to The Master too!

Edward Fitzgerald's
“Rubaiyat of Omar Khayyam”
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CHAPTER 0

All Numbers Great and Small
Whatever is not forbidden, is permitted.

J. C. F. von Schiller, Wallensteins Lager

This book is in two =  (zero, one | } parts. In this zeroth part, our topic 
is the notion of number. As examples we have the finite numbers 0 ,1 ,2 ,..., 
- 1, 1, y/2, n ,.. .;  infinite numbers such as w (the first infinite ordinal); and 
also infinitesimal numbers such as l/ai. If we were to adopt the axiom of 
choice, then the infinite cardinal numbers like N0 could be identified with the 
least corresponding ordinal numbers, so that we can regard these too as 
part of our system (although the arithmetic is different).

In the system of “Surreal Numbers” we shall describe, every number has its own 
unique name and properties and many remarkable numbers, such as

V ( « + 1) - -0)

appear. But the “number” i = y /— 1 will not arise in the same way (though 
we add it in Chapter 4), since there is no property enjoyed by i which is not 
shared by — i. In fact we reply to questions about “the square root of — 1” 
by simply asking exactly which square root of — 1 is meant?

Let us see how those who were good at constructing numbers have 
approached this problem in the past.

Dedekind (and before him the author—thought to be Eudoxus—of the 
fifth book of Euclid) constructed the real numbers from the rationals. His 
method was to divide the rationals into two sets L and R in such a way that 
no number of L was greater than any number of R, and use this “section” to 
define a new number {L | R} in the case that neither L nor R had an extremal 
point.

His method produces a logically sound collection of real numbers (if we 
ignore some objections on the grounds of ineffectivity, etc.), but has been 
criticised on several counts. Perhaps the most important is that the rationals 
are supposed to have been already constructed in some other way, and yet

3



4 ALL NUMBERS GREAT AND SMALL

are “reconstructed” as certain real numbers. The distinction between the 
“old” and “new” rationals seems artificial but essential.

Cantor constructed the infinite ordinal numbers. Supposing the integers 
1, 2,3 , . . .  given, he observed that their order-type co was a new (and infinite) 
number greater than all of them. Then the order-type of (1 ,2 ,3 ,..., to) is a 
still greater number co +  1, and so on, and on, and on. The similar objections 
to Cantor’s procedure have already been met by von Neumann, who observes 
that it is unnecessary to suppose 1, 2,3 , . . .  given, and that it is natural to 
start at 0 rather than 1. He also takes each ordinal as the set (rather than 
the order-type) of all previous ones. Thus for von Neumann, 0 is the empty 
set, 1 the set {0}, 2 the set {0, 1 co the set {0, 1, 2, and so on.

In this chapter we shall show that these two methods are part of a simpler and 
more general one by which we can construct the very large Class No of “Sur
real Numbers,” which includes both the real numbers and the ordinal num
bers, as well as others like those mentioned above. Inside this book we shall 
usually omit the adjective “surreal,” coined by Donald Knuth, and simply call 
these things “numbers.” It turns out that No is a Field (i.e., a field whose 
domain is a proper Class)—in general we shall capitalise the initial letter of 
any “big” concept, on the grounds that proper Classes, like proper names, 
deserve capital letters. So, for instance, the word Group will mean any group 
whose domain is a proper class.

CONSTRUCTION

If L, R are any two sets of numbers, and no member of L is ^  any member 
of R, then there is a number (L | R}. All numbers are constructed in this way.

CONVENTION

If x =  {L | R} we write x*1 for the typical member of L, and x* for the 
typical member of R. For x  itself we then write {x^lx*}.

x  = {a ,b ,c ,. . . \d ,e ,f . . .}  means that x =  {L|R}, where a ,b ,c ,... are 
the typical members of L, and d, e,f, . . .  the typical members of R.

DEFINITIONS

Definition of x >  y, x  <  y.
We say x >  y  iff (no x* <  y  and x <  noy1), and x <  y  iff y >  x.
We write x ^  y to mean that x <  y  does not hold.

Definition of x =  y, x  > y, x < y. 
x  = y  iff (x 2* y  and y ^  x). x >  y  iff (x >  y  and y £  x). 
x <  y  iff y > x.
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Definition of x +  y. 
x +  ^ = {xi  +  y, x +  )^ |x *  +  y, x +  y*}.

Definition of — x.
- x  =  { -x *  | - x L}.

Definition of xy. 
xy  = {x*-y +  xy1 — x fy1, x*y +  xy* — x*y* j

\xLy  +  xy* -  x^y*, x*y +  xy1 -  x*^}.

It is remarkable that these few lines already define a real-closed Field 
with a very rich structure.

We now comment on the definitions. A most important comment whose 
logical effects will be discussed later is that the notion of equality is a defined 
relation. Thus apparently different definitions will produce the same number, 
and we must distinguish between the form {L|jR} of a number and the 
number itself.

All the definitions are inductive, so that to decide, for instance, whether 
x >  y we must consider a number of similar questions about the pairs x*, y 
and x, y1. but these problems are all simpler than the given one. It is perhaps 
not quite so obvious that the inductions require no basis, since ultimately 
we are reduced to problems about members of the empty set.

In general when we wish to establish a proposition P(x) for all numbers x, 
we will prove it inductively by deducing P(x) from the truth of all the propo
sitions Pfx*) and P(xR). We regard the phrase “all numbers are constructed 
in this way” as justifying the legitimacy of this procedure. When proving 
propositions P(x, y) involving two variables we may use double induction, 
deducing P(x,y) from the truth of all propositions of the form P(xL,yX 
P(xR,y l  Pix, / ) ,  Pix, y*) (and, if necessary, Pixf, / ) ,  P(xL,y*), P(x*,/X  
PixR, y*)). Such multiple inductions can be justified in the usual way in terms 
of repeated single inductions.

We shall allow ourselves to use certain expressions [L IR) that are not numbers, 
since they do not satisfy the condition that no member of L shall be > any member 
of R. In general we may write down any expression {L I R] and even discuss 
inequalities between such expressions before establishing that they are numbers, 
but if we wish such an expression to represent a number we must establish the 
condition on L and R. In the more general theory developed in the next part of the 
book, we show that when the condition on L and R is omitted we obtain the more 
general notion of a game.

Our next comments concern the motives for these particular definitions. 
Now it is our intention that each new number x shall lie between the numbers 
x f  (to the left) and x* (to the right), and that + , —, ., etc., shall have their 
usual properties. So that if (say) y >  some x* we would not have x >  y, for
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then x ^  x*. Similarly, we could not allow x >  y if x  <  some yL. So we 
define x  >  y in all other cases. (This conforms with our motto, and helps 
to ensure that numbers are totally ordered.)

The spirit of the definitions is to ask what we know already (i.e. by the 
answers to simpler questions) about the object being defined, and to make 
the answers part of our definition. Thus if addition is to have nice properties 
and if x is between x L and x*, and y between and y*, then we know 
“already” that x  +  y must lie between both x1 + y  and x +  / •  (on the left) 
and x* +  y  and x +  y* (on the right), which yields the definition of x +  y. 
Similarly — x will lie between — x* (on the left) and — x1, (on the right), which 
suffice to define -  x.

It is not nearly so easy to find exactly what we “already” know about xy. 
It might seem, for instance, that we know that xy lies between xLy  and xy^ 
(on the left) and x Ry and xy* (on the right), which would yield the definition

xy =  {xLy, xy1 1 x*y, xy*}.
But this fails in two ways. Firstly, what we “knew” here is sometimes false 
(consider negative numbersX and secondly, even when it is true it need not 
be the strongest information we “already” know. In fact, of course, this 
defines the same function as x +  y.

It takes a great deal of thought to find the correct definition, which comes 
from the observation that (for instance) from x — xL > 0 and y — y1 >  0 
we can deduce (x — xL)(y — y1) >  0, so that we must have xy > xLy  + 
xyL -  xLyL. Since all the products here are simpler ones, and since we regard 
addition and subtraction as already defined, we can regard this inequality 
as already known when we come to define xy, and the other inequalities in 
the definition are similar. [Note that for positive numbers x and y the in
equality xy >  xLy  +  xyL -  x*'/' is stronger than both inequalities xy > x^y, 
xy > xyL.']

We can summarise our comments by saying that the definitions of the 
various operations and relations are just the simplest possible definitions 
that are consistent with their intended properties. In the next chapter, we 
shall verify that these intended properties really hold of all numbers, but 
in the rest of this chapter we shall simply explore the system in a more 
informal way. To simplify the notation, when L is the set [a, b, c, ...} and R 
the set x, y, z}, we shall simply write {a, b, c , ... I x ,  y, z} for [ L I R).

EXAMPLES OF NUMBERS, AND SOME OF THEIR PROPERTIES 

The number 0

According to the construction, eveiy number has the form (L | J?}, where
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L and R are two sets of earlier constructed numbers. So how can the system 
possibly get “off the ground”, since initially there will be no earlier constructed 
numbers?

The answer, of course, is that even before we have any numbers, we have a 
certain set of numbers, namely the empty set 0 ! So the earliest constructed 
number can only be (L | /?} with both L =  R =  0 ,  or in the simplified nota
tion, the number { | }. This number we call 0.

Is 0 a number? Yes, since we cannot have any inequality of the form 
0^ 0*. for there is neither a Of' nor a 0*!

IsO 5  0? Yes, for we can have no inequality of the form 0* <  0 or 0 <  O'". 
So by the definition, and happily, we have 0 =  0. We also see from the 
definitions that —0 =  0 +  0 =  0, since there is no number of any of the 
forms — 0*. — Of, + 0,0 +  01, 0* + 0,0 +  0*. A slightly more complicated 
observation of the same type is that xO = 0, since in every one of the terms 
defining xy there is a mention of y1, or y* so that when y = 0 no term is 
needed and the expression for xy reduces to { | } =  0. So the number 0 has 
at least some of the properties we know and love.

The numbers 1 and — 1

We can now use the sets {} and {0} for L and R, obtaining hopefully the 
numbers { | }, {01}, { 10}, {0 j 0}. But since we have already proved that 
0 5  0, {0 10} is not a number, and we have only two new cases, which we 
call 1 = {01} and — 1 =  {10}. Note that — 1 is indeed a case of the definition 
—x.

Is 0 5s 1? This will be true unless there is 0* with 0* <  1 (there isn’t) or 
1L with 0 <  \L (there is, namely 1L = 0). So we do not have 0 5  1.

Is 1 5  0? This is true unless there is 1* with or Of with (what
ever is, there plainly can’t be). So we have 1 5  0, and so 1 >  0.

By symmetry, we have — 1 <  0, and so if inequalities “behave”, then we 
should have — 1 <  1. We check this:

Is —1 5  1? This will happen unless there is (— 1)* ^  1 or . . .  (there is, 
namely (— I)* =  0). So we do not have — 1 5  1.

Is 1 5  — 1? This will happen unless there is 1* with . . .  or (— Yf" with . . .  
(there isn’t). So 1 5  — 1, so 1 >  — 1, as we hoped.

We can generalise a part of this last argument. If there is no x* and no y1, 
then x 5  y holds vacuously.

We forgot to check that 1 5  1. Why not do this yourself?

The numbers 2, and their negatives

We now have three numbers - 1  < 0 <  1, and so a whole battery of
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particular sets

{ }. { - !} . {0}, {1}, { -1 ,0} , { -1 ,1} , {0,1}, { -1 ,0 ,1}

to use for L  and R. But the condition that no member of L  should be >  any 
member of R restricts us to the possibilities

{ |*} , { L |}, { —110}, { —110, 1}, { —111}, {0 11}, { 1, 0 11}.

If our hopes are fulfilled, we should have {11} >  1 and 0 <  {011} <  1. So 
we anticipate their probable values, and define {11} =  2, {0| 1} =  We 
then have, of course, { | - 1} = - 2, and { — 110} =  — ^, from the definition 
of negation.

Before we justify these names, let us ask about some of the other possibi
lities. For example, what about the number x = {0,11}? This x  is presumably 
restricted by the conditions 0 <  x, 1 <  x  But since 0 <  1, if inequalities 
behave (and we shall suppose from now on that they do), the condition 
1 <  x already implies 0 <  x, so in some sense the entry 0 isn’t telling us 
anything. We can therefore hope that x = {0,11} =  {11} =  2. We test 
this, supposing 2 >  1 >  0.

Is x >  2? This is so unless there is x* <  2 (no) or x <  some 21 (no, because 
the only 2L is 1, and we believe x >  1). So we think that x >  2.

Is 2 >  x? Yes, unless some 2 * ... (no) or 2 <  some xf- (no, since the only 
x1 are 1 and 0). So indeed x =  2, if all our expectations are fulfilled.

In a similar way, we should expect all the equalities in the table:

— 2 = {| —1} = {| —1, 0} = {| —1, 1} =  {| —1, 0, 1}

—1 =  { |0} = { |0, 1}

—i  =  {—1 1°} = {—i I o, i}

0 = {|} = { - 1|} = {|1} = { - 1|1}
2 =  {0 | 1} =  { — 1. 0 1 1}
1 = { 0 |}  = { - 1, 0 |}

2 — {1 1} =  {0, 11} = { —1, 11} =  { —1, 0, 11}.

Clearly we need some way of automating our expectations. Let us ask when 
the number X  =  {y, x1 1 x*} obtained by adding a new entry y  to the left of 
x is still equal to x.

Is X  >  x? Yes, unless some X*  <  x (no, since every X* is an x*) or X  <  
some x1, (no, since every x1, is an X L).

Is x >  X I  Yes, unless some x* <  X  (no, since every x* is an AT*) or 
x <  some X L (and so x <  y, since every other X L is an We conclude 
that provided y ^  x, we can add y to the left of x in this way without affecting
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x. This justifies all the equalities in the table. (We allow also, of course, y to 
be inserted on the right if y  ^  x.)

[In the case {— 1 1 1} we need to use the process twice. Thus since 
- 1  0 = { | }, we have 0 =  { - 1 1}. Then since 1 ^  0 =  { — 1 | }, we have
0 =  { — 11 !}•]

It is not hard to check the inequalities

— 2 <  — 1 <  < 0 < ^ < 1 < 2,

which shows that at least these numbers have the right order properties. 
What else do we require to justify their names?

According to the definition

1 +  1 =  {0+  1,1 + 0 |} ,

since 0 is the only 1L, and there is no 1*. So provided 0 +  1 and 1 +  0 behave 
as expected, we have 1 +  1 = 2, as we might hope. But provided x^ +  0 =  x1 
and x* +  0 = x* we have

x +  0 =  {x* + 0 1 x* +  0} =  {x* | x*} = x,

and similarly 0 +  x =  x. Since we already know 0 + 0 =  0, this shows that 
l +  0 =  0 +  l =  l, as we wanted for the proof of 1 +  1 =  2, but in fact it 
gives us an inductive proof that x +  0 =  0 +  x =  x for all x.

It is much harder to show that ^ ^ =  1, justifying the name of From
the definition (supposing that x +  y = y +  x for all x, y, which is quite 
easy to prove inductively) we see that

where we are using 1* as a temporary name for 1 +
Is ^ +  £ >  1? Yes, unless 1* ^  1 or § +  ^ <  0. Oh my, we have to do these 

first. Let’s get on with it.
Is 1 5s 1 ?̂ Yes, unless (empty) or 1 <  some l$L. But one of the (1 +  is 

1 +  0 == 1, so 1 £  I f  
Is 0 5  jf +  ̂ ? Yes, unless (empty) or 0 <  some ( | +  j)L. But since 

0 <  ^ +  0, we have 0 ^  \  So (at last) j  + j  ^  1.
Now is the time to leave the question

“is 1 5  \  +  j r

to the reader. He should conclude that indeed ^ ^ =  1.
In most of our examples xL and x* have been fairly close to each other, so 

that there was an obvious candidate for {xL | x*}. When they are far apart, 
there will be many simple numbers in between—which one of these will 
{**■ | x*} be? We consider x =  { - 1 12}.
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Is x >  OP Yes, unless 2 ^ 0  (false) or x <  some (false). So in this case 
we have x ^  0.

Is 0 3s x? Yes, unless some 0* < x (false) or 0 <  — 1 (false). So in fact 
x =  0.

More generally, the argument proves that if every < 0 and every 
x* > 0, then x =  0, so for instance {— 1, — ̂  f 2,3} = 0.

But when we have defined 2\ and 17 we shall have to decide about {2  ̂117}. 
A first guess might be their mean, 9f, but since we have just seen that the 
mean rule does not always hold, this seems unlikely. A clue is given in the 
form of the preceding argument—since we must ask the questions “is x = yT  
for the various possible y  in order of simplicity, the answer should be the 
simplest y that is not prohibited. This rule will be established in Chapter 2, 
and it implies, for instance, that {2* | 17} = 3, and {* 11} = j.

The numbers 1}, 3, and so on

Once we have settled all the trivialities like x > x for all x (which we have 
begun to take for granted), we can proceed a little faster. For instance, if 
L and R are sets of numbers chosen from those we already have, then since 
we suspect these numbers are totally ordered, in any expression x =  {x1, | x*}
we need only consider the greatest yf“ (if any) and the least x* (ditto). This
gives us for the next “day” only the numbers

0 < { 0 | * } < i < { } | l } < l  < { 1 | 2 } < 2 < { 2 | }
and their negatives. What are the proper names for these numbers? We 
suspect that {21 } = 3, and indeed we can verify that

1 + 1 + 1 = (0 + 1 + 1,1 + 0 + 1,1 + 1 + 0 |} = {2 1}.
The equation {112} = 1  ̂ is almost as easy to guess and verily. So we shall 
make l j  a permanent name for this number.

The two likely guesses for (0 1 ^} are £ and J. If anything, the first might 
seem the better guess, since otherwise it’s hard to see what £ will be. But in 
fact it turns out that {01 i} is \ —at least we can verify that twice this number 
is In a similar wav. {* I 1} turns out to be J rather than f.

It is now easy to guess the pattern for the numbers which take only finitely 
much work to define. Let us imagine the numbers created on successive 
“days”, in such a way that on day number n we create all numbers x = {L \ R) 
for which every member of each of the two sets L, R has already been con
structed. We number the day on which 0 was created with the number 0 
itself, so that our creation story begins (or began?) on the zeroth day.

Then the numbers seem to form a tree, as shown in Fig. 0. Each node of the 
tree has two “children”, namely the first later numbers bom just to the left
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12 ALL NUMBERS GREAT AND SMALL

and right of i t  We guess that on the nth day the extreme numbers to be bom 
are n and — n, and that each other number is the arithmetic mean of the 
numbers to the left and right of i t  Happily, of course, this turns out to be 
the case. Supposing all this, we know all numbers bom on finite days.

The numbers bom on day co

Of course the process doesn’t stop with these numbers. The next day we 
call day co. Let’s consider some of the numbers bom then. The largest number 
is the number co itself, defined as {0 ,1 ,2 ,3 ,... | }. Of.course, to has many other 
forms, for instance co = {1,2,4,8,16,... | }, or even co =  {all numbers (m/2") | }. 
But since the collection of numbers to the left of co has no largest member in 
these expressions, we cannot simply eliminate all but one of the numbers 
appearing on the left.

Of course the most negative number bom on day co will be
—co =  { 10, — 1, —2, —3,...}.

The smallest positive number bom on this day is the number {0 j 1, ...},
which turns out to be 1/co, surprisingly and fortunately.

But besides these strange new numbers, some quite ordinary numbers are 
bom at the same time. For instance, we have

1. 1 _i_ JL x  1 j .  -i_ .1. JL <  ^
4  4 '  16 4  ^  16 64 3 • ^*2  8 ^ 2 ’

so we might expect the number

U>i + + ^  • • • I i  i  -«> • • •} = *• say
to be and behold, it can in fact be proved that x +  x +  x =  l ! I n a  similar 
way, all of the real numbers defined by Dedekind, including in particular all 
the remaining rational numbers can be defined as “Dedekind sections” 
of the dyadic rational numbers (by which we mean the numbers of the form 
m/2", m and n integers), rather than as sections of all rationale So y/2, e, and jt 
are all bom on day co.

It is rather nice that our definition of equality ensures automatically that 
the number (for example)

(dyadic rationals <  § | dyadic rationals >  f }

turns out to be the same as the number § =  {J | ^}, so that the dyadic rationals 
“recreated” on day co are “the same” as those created before.

It is also rather nice that Cantor’s ordinal numbers (as modified by von 
Neumann) fit smoothly into our system. Thus we have

0 =  { | }, 1 =  {0 1}, 2 =  {0, 11} ,. . . ,  co — {0, 1, 2,3 , . . .  | },
« =  {/?< a | },
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where von Neumann has

0 = 0 , 1 = {0}, 2 = {0, 1} , . . . ,  co = {0, 1, 2,...} , a =  { £ < « } , . . . .
In other words, the ordinal numbers are those we obtain by requiring always that 

the set R be empty. We may say that Cantor was only interested in moving ever 
rightwards, whereas Dedekind stopped to fill in the gaps, so that R was always 
empty for Cantor, never empty for Dedekind. It is remarkable that by dropping 
these restrictions we obtain a theory that is both more general and more easy to 
work with. (Compare the theory developed in the next chapter with the classical 
foundation for the real numbers in which we must first construct or postulate the 
“natural numbers”, then rationals as equivalence classes of ordered pairs, then 
reals as sections of rationals, with negative numbers being introduced at some 
stage in the process.)

Some more numbers

After to, the number { 0 ,1 ,2 ,3 ,..., to | } =  co +  1 need come as no surprise, 
but perhaps the number {0 ,1 ,2 ,3 ,... | co} will. This number, call it x, 
should satisfy n <  x <  co for all finite integers n, in other words, x should 
be an infinite number less than the “least” infinite number co. Adding 1 to x, 
we find the number

{1,2,3 x| to +  1} =  y, say.

Here, since x < co, and co+ 1  ^  co, we see that y =  co, for the new entries x 
on the left and co +  1 on the right have made no difference. So x +  1 =  co,
x =  co — 1.

Check that we get the same result on subtracting 1 from co.
In a similar way, we find successively that

co -  2 = {0, 1, 2,3 , . . .  | co, co -  1} , . . . ,

co — n =  {0, 1, 2,3 , . . .  | to, co — 1, co — 2, . . . ,  co — (n — 1)}.

Plainly the next number to consider is

z = {0, 1, 2,3 , . . .  | co, co -  1, co — 2, ...}  =  {n | co -  n}, say.

It should not take the reader too long to verify that z =  co/2 When he has
done this, and defined co/4, co/8, . . .  as well, he should be in a position to 
define co/3 (for instance), and to verify our assertion that

(0 ,1 ,2  3, . . .  | co, co/2 co/4, co/8,...} 

is a square root of co.
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Other easy exercises are

o ' ' , ' ] . 4
co’2et>’4<o’ " T  a)2’

and so on.

If the reader prefers to try his hand at “constructing” new numbers rather 
than examining values of those given here, let him try to find definitions for 
\Jw, a)1;®, co +  it, (co +  I)-1, y/(co -  IX and to show, making any reasonable 
assumptions, that they have the properties we should expect.

In the next chapter, we shall prove that the Class of all numbers really is a 
Field, making no use of any of the supposed “facts” from this chapter. It 
will be some time before we see so many particular numbers mentioned 
again. In the third chapter, we shall produce a “canonical form” for numbers, 
and learn how to manipulate them a little more freely, and in the process 
will see exactly how general our class of numbers turns out to be.



CHAPTER 1

The Class No is a Field
Ah! why, ye Gods, should two and two make four?

Alexander Pope, “The Dunciad"

PRELIMINARY COMMENTS

There are two problems that arise in the precise treatment which need spe
cial comment. The first is that it is necessary to have an expression {LI/?} 
existing even before we have proved that it is a number. The second concerns 
the fact that equality is a defined relation, which must initially be distin
guished from identity.

Games. The construction for numbers generalises immediately to the 
following construction for what we call games.

Construction. If L and R are any two sets of games, then there is a game 
{L | R}. All games are constructed in this way.

Although games are properly the subject of the first part of this book (where 
the name will be justified), it is logically necessary to introduce them before 
numbers. Order-relations and arithmetic operations on games are defined 
by the same definitions as for numbers. The most important distinction 
between numbers and general games is that numbers are totally ordered, 
but games are not—there exist games x  and y for which we have neither of 
x $s y, y >  x.

To show that a game x  = {**■ | x*} is a number, we must show firstly that 
all of the games xL, xR are numbers, and secondly, that there is no inequality 
of the form x f  >  x R.

IDENTITY AND EQUALITY

We shall call games x and y identical (x = y) if their left and right sets are 
identical—that is, if every x f  is identical to some y1, every x* identical to

15



16 THE CLASS NO IS A FIELD

some y*, and vice versa. Recall that x and y are defined to be equal (x = y) 
if and only if we have both x >  y and y ^  x  The distinction causes no 
great problems until we come to multiplication, where the trouble is that 
there can exist equal games x and y for which xz and yz are unequal. But all 
goes well as long as we restrict ourselves to the multiplication of numbers.

Finally, we note that almost all our proofs are inductive, so that, for 
instance, in proving something about the.pair (x,y) we can suppose that 
thing already known about all pairs (x*1, yX (xM, y), (x, f y  (x, y*). After a time 
we feel free to suppress all references to these inductive hypotheses. We 
remind the reader again that since ultimately we are reduced to questions 
about members of the empty set, no one of our inductions will require a 
“basis”. The games x1", x* will be called the Left, Right options of x.

PROPERTIES OF ORDER AND EQUALITY

Recall that x >  y if we have no inequality of form x* <  y or x <  y*\

T h eo rem  0. For all gamps x we have
(i) x $ x K,
(ii) x ^ x ,
(iii) x ^  x,
(iv) x =  x.

Proof, (i) Taking y as x* in the definition of > , and using the inductively 
true relation x* <  x* we see that we cannot have x ^  y.

(ii) is similar.
(iii) Taking y as x, we now know that we have no x* < y and x <  no y1, 

whence x >  y.
(iv) from x > x and x <  x, we deduce x =  x.

T h eo rem  1. I f  x  ^  y  and y  ^  z, then x  > z.

Proof. Since x ^  y, we cannot have x* <  y, and so by induction we cannot 
have x* <  z. Similarly we cannot have x <  zL, and so we must have x >  z.

Summary. We now know that >  is a partial order relation on games, and
that =  has the right properties (for instance x =  y and x < z imply y < z\

T h e o re m  2. For any number x  we have xL < x < x* for all xL, x*. Also, for 
any two numbers x and y we must have x  <  y or x  >  y.

Proof (i) Since we know x ^  x*, it suffices to prove x* >  x. This will be 
true unless some x** <  x or x* <  some xf. But the former inductively



implies x* <  x** < x, a contradiction, and the latter is prohibited by the 
definition of number.

(ii) The inequality x % y  implies either some x* <  y or x < some yL,
whence either x <  x* <  y or x ^  <  y.

Summary. Numbers are totally ordered.

PROPERTIES OF ADDITION

Definition. 0 =  { | }.
We recall that x +  y = {xL +  y, x  +  y1 1 xK +  y, x +  y*}.

T h eo rem  3. For all x, y, z we have

x + 0 = x, x + y = y +  x, (x +  y) +  z = x +  (y +  z).

Proof.

x  + 0 =  {x1, +  0 1 x* +  0} = {x1-1 x*} = x

X +  y  =  {xf + y, x  + / 1X* 4- y, x + y*} =

= {y +  x1, /■ + x | y +  x*, y* +  x} = y +  x.

(x +  y) +  z =  {(x +  y f  +  z,(x +  y) +  zL\ . s

s  {(x11 + y) +  z,(x +  / )  +  z,(x +  y) +  ẑ 1!...}  =

= {x1, +  (y +  z), x +  ( /  +  z), x +  (y +  z1) | ...}  =

= . . .  = x +  (y +  z).

In each case the middle identity follows from the inductive hypothesis. 
Proofs like these we call 1-line proofs even when as here the “line” is too long 
for our page. We shall meet still longer 1-line proofs later on, but they do 
not get harder—one simply transforms the left-hand side through the 
definitions and inductive hypotheses until one gets the right hand side.

Summary. Addition is a commutative Semigroup operation with 0 as 
zero, even when we demand identity rather than equality.

PROPERTIES OF NEGATION 

Recall the definition — x = {—x*) —xf).

T heorem  4. (i) - ( x  + y) = - x  + - y
(ii) - ( - x )  =  x
(iii) x + - x  =  0

PROPERTIES OF ADDITION 17
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Proof, (i) and (ii) have easy 1-line proofs. Note that (iii) is an equality rather 
than an identity. If, say, x + - x  ^=0, we should have some (x + —x f  <  0, 
that is, x* H— x  <  0 or x + —xL ^ 0 .  But these are false, since we have by
induction x* H x* >  0, x f  +  — x f  >  0.

Summary. With equality rather than identity, addition is a commutative 
Group operation, with 0 for zero, and -  x for the negative of x. All this is 
true for general games.

PROPERTIES OF ADDITION AND ORDER

T h e o r e m  5. We have y  $s z iff x  4- y  ^  x  +  z.

Proof. If x +  y  >  x +  z, we cannot have

x + y* <  x -t-zo rx  +  y <  x +  zL,

and so by induction we cannot have y* < z or y <  ef, so that y > z.
Now supposing x + y ^  x +  z, we must have one of

x* +  y s £ x  +  z, x +  y* < x +  z, x +  ysSx^ + z, x +  y ^ x  +  z1,

and if we further suppose y ^  z, we deduce one of

x* +  y x +  y, x +  y* <  x +  y, x +  z x* +  z, x +  z ^ x  + z1-,

all of which imply contradictions by cancellation.
Theorem 5 implies in particular that we have y =  z iff x +  y =  x +  z, 

justifying replacement by equals in addition.

T h eo rem  6. (i) 0  is a number,
(ii) if x is a number, so is—x,
(iii) if x and y are numbers, so is x  + y.

Proofs, (i) we cannot have 01 ^  0", since there exists neither a 01 nor a 0*.
(ii) From x L < x  < x* and xL, x* numbers, we inductively deduce 

—x* <  —x < —x f  and —x*, —x1 numbers.
(iii) We deduce inductively that each of

xL + y ,x  + yL < x  + y <  each of x* +  y, x +  y* 

all of x f  + y, etc., being numbers.

Summary. Numbers form a totally ordered Group under addition.

PROPERTIES OF MULTIPLICATION

Definition. 1 = {01}



We recall the definition of multiplication

xy = {xLy +  xy*- -  x fy1-, x*y + xy* -  x*y* |

| x fy  +  xy* -  xLyR, x*y +  xy1 -  x*yL}.
T heorem  7. For all x, y, z we have the identities

xO = 0, x l = x, xy s  yx, (-x )y  =  x (-y )  =  -x y ,

and the equalities

(x +  y)z = xz +  yz, (xy)z = x(yz).

Proo/ The identities have easy 1-line proofs. The equalities also have 
1-line proofs, as follows:

(x +  y)z =  {(x + y f z  +  (x + y)zL -  (x +  y f z 1, . . .  \ . ..} =

= {(x* +  y)z +  (x +  yk1- -  (xL + y)zL,

(x +  / ) z  +  (x +  y )^  -  (x +  yL)zL, . . .  | ...} =

= {(x^z + xz1- -  xLzL) + yz, xz +  (/"z + yz1- -  y'-zL),. . .  | ...}

= xz +  yz.

[This fails to yield an identity since the law x +  - x  =  0 is invoked.]
The central expression for xyz has four expressions like

xLyz +  x / 'z  +  xyz1" -  x ^ /'z  -  xLyzL -  x / 'z 1' +  xLyLzL

(with perhaps some even number of x1, y1, zL replaced by x*, 31*, z*) on the 
left, and four similar expressions (with an odd number of such replacements) 
on the right.

Note. We now have the more illuminating form 

{xy -  (x -  xi )[y -  / ) ,  xy -  (x* -  x) (y* -  y)|
| xy +  (x -  xLXy* -  y), xy +  (x* -  xXy -  /")}

for the product xy.

T h e o r e m  8. (i) I f  x  and y are numbers, so is xy
(ii) / / x ,  =  x2, then x ty = x2y
(iii) I f  x, s* x2, and y, s* y2, then x ty2 +  x2yj <  x tyt +  x2y2, the 

conclusion being strict if both the premises are.

Proof. We shall refer to the inequality of (iii) as P(xv  x2 :y v y2). Note that 
if Xj <  x2 <  x3, then we can deduce P(x,, x3 : yp y2) from the inequalities 
P(xp x2 : y v  y2) and P(x2, x3 : y,, y2) by adding these and cancelling common 
terms from the two sides.

PROPERTIES OF MULTIPLICATION 19



Now to prove (i), we observe first that inductively, all options of xy are 
numbers, so that we have only to prove a number of inequalities like

x^y +  x f  -  <  x^y +  xy* -  x1,2/ .

But if x1* < x1,2 we have

x f 'y  +  xy1 -  x^'y1 ^  x ^y  +  xy1 -  x^y1, <  x^y  +  xy* -  x**y*

(these two inequalities reducing respectively to Pfx1*, x l  y1, y) and 
Pix1-2, x : y*)X while if x12 <  x1,1 we have instead

x^y  +  xy1- -  x1* / ’ <  x^'y +  xy* -  x1ly* <  x ^y  +  xy* -  x^y*.

(these being Pfx1,1, x : y*1, y*) and P(x?*, x1- ' : y, y*)).
Now to prove (ii)i This implication follows immediately from the fact 

that every Left option of either is strictly less than the other, and every 
Right option strictly greater, the relevant inequalities all being easy.

If x, = x2 or yj =  y2 we can use (ii) to show that the terms on the Left of
(iii) are equal to those on the Right

So we need only consider the case xx <  x2, y t <  y2. Since x, < x2, 
we have either Xj <  xf <  x2 or x l <  xf <  x2, say the former. But then 
P(xj, x2 : y,, y2) can be deduced from P{xv  x f : y v  y2) and P(xf, x2 : y v  y2X 
of which the latter is strictly simpler than the original. A similar argument 
now reduces our problem to proving strict inequalities of the four forms

^ ( x V r / .y X  Pix1-, y : y, y*), Pix, x * : / ,  y), and P(x,x*:y,y*) 

which merely assert that xy has the right order relations with its options.

T h eorem  9. I f  x  and y are positive numbers, so is xy.

Proof. This follows from P(0, x:0,y).

Summary. Numbers form a totally ordered Ring. Note that in view of 
Theorem 8 and the distributive law, we can assert, for example, that x >  0, 
y >  z together imply xy ^  xz, and that if x ^  0, we can deduce y =  z from 
xy = xz.
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PROPERTIES OF DIVISION

We have just shown that if there is any number y such that xy =  t, then 
y is uniquely determined by x and t provided that x 0. We must now show 
how to produce such a y. It suffices to show that for positive x there is a 
number y such that xy = 1. We first put x into a sort of standard form.



Lemma. Each positive x  has a form in which 0 is one of the xf, and every other 
x f is positive.

Proof. Let y be obtained from x by inserting 0 as a new Left option, deleting 
all negative Left options. Then it is easy to check that y is a number, and 
that y =  x.

We write x = {0, x f  | x*} in this section, and restrict use of the symbol 
x f  to the positive Left options of x. (Note that all the x* are automatically 
positive.)

Now we shall define a number y, explain the definition, and prove that y 
is a number and that xy = 1.

Definition

1 +  (x* -  x ) / - 1 +  (xf -  x)y* 1 +  (x1, -  x)yf 1 +  (x* -  x)y*|
y - 1 ?  ’ ?  ?  ’ 1?  J

Note that expressions involving y f and y* appear in the definition of y. 
It is this that requires us to “explain” the definition. The explanation is that 
we regard these parts of the definition as defining new options for y in terms 
of old ones. So even the definition of this y is an inductive one.t [This is in 
addition to the “other” induction by which we suppose that inverses for the 
x f  and x* have already been found.]

Theorem  10. We have (i) xy1 <  1 <  xyRfor all y1, y*.
(ii) y is a number.
(iii) (xyf <  1 <  (x y f f o r  all (xy)1-, (xy)*.
(iv) xy = 1.

Proof. We observe that the options of y are defined by formulae of the 
form

1 + ( x '- x ) y '  
y x'

where /  is an “earlier” option of y, and x' some non-zero option of x. This 
formula can be written

i -  xy ' =  (i -

which shows that y" satisfies(i)if /  does. Plainly 0 does. Part (ii) now follows,

t  To see how the definition works, take x  = ( 0 ,2 1} =  3. Then there is no x* and the only 
xi i s 2 , s o x t - x  =  - 1  and the formula for y  becomes y =  (0, ](1 — y*)|i< l -  y1)}. The 
initial value y 1 =  0 gives us ^(1 -  0) =  \  for a new y*, whence }(l -  }) =  [  a i  a / ,  then 
j(l -  J) =  J for a y*, and so on, yielding y =  which certainly looks like

PROPERTIES OF DIVISION 21
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since we cannot have any inequality y^ >  y*. The typical form of an option 
of xy is x'y +  xy' -  x y , which can be written as 1 4- x'(y -  y”) with the 
above definition of y", and this suffices to prove (iii). For (iv), we observe 
first that z =  xy has a left option 0 (take x 1 =  y1 =  0), and that (iii) asserts 
that z1, <  1 <  z* for all z1-, zR. Then

z >  1, since no zR <  1, and z <  no 1L (since some z1 = 0), and also 

1 5s z, since no 1* <  z, and 1 s* no zL, 

so that indeed z =  1.

Summary.' The Class No of all numbers forms a totally ordered Field.

Clive Bach has found a similar definition for the square root of a non
negative number x. He defines

where x^ and x* are non-negative options of x, and y1, y*-*, y* y** are options 
of y chosen so that no one of the three denominators is zero. We shall leave 
to the reader the easy inductive proof that this is correct.

Martin Kruskal has pointed out that the options of 1/x can be written in 
the form

■-"(’ - a
X

where the denominator x cancels formally, the x, denote positive options of x, 
and the product may be empty. This is a Left option of 1/x just when an even 
number of the x, are Left options of x. There is a similar closed form for 
Bach’s definition of yjx.



CHAPTER 2

The Real and Ordinal Numbers
Don 7 let us make imaginary evils, when you know we have so many 

real ones to encounter.
Oliver Goldsmith, "The Good-Natured Man"

The following theorem gives us a very easy way of evaluating particular 
numbers. We call it the simplicity theorem.

T heo rem  11. Suppose for x — {xf | x * }  that some number z satisfies 
x f  if z ^  x* for all x f, xR, but that no option o f z satisfies the same condition. 
Then x = z.

[Note; this holds even when x is only given to be a game.]

Proof We have

x >  z unless some x* ^  z (no!) or x <  some zf.

But from x <  r1, we can deduce xfi ^  x < z f < z ^  x* for all x f, xR, from 
which we have x f  ^  z f  ^  x* contradicting the supposition about z. So 
x >  z, similarly z >  x, and so x = z.

The main assertion of the theorem is that when x is given as a number, it 
is always the simplest number lying between the x f  and the x*, where simplest 
means earliest created. [For if z is this simplest number, the simpler numbers 
zL, zR cannot satisfy the same condition.] But the exact version presented 
above has several advantages, since it holds when x is given as a game not 
necessarily known to equal a number, and it is perhaps not quite obvious 
exactly what is meant by “the simplest number such th a t. . . ”. In the applica
tions below, there is never any problem.

T heorem  12. I f  x is a rational number whose denominator divides 2", then 
x = {x — (1/2") | x +  (1/2*)}.

Proof. For n =  0 the theorem holds, since it asserts that x is the simplest
23
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number between x — 1 and x  +  1, whereas we know that in fact it is, if 
positive, the simplest number greater than x  — 1, if negative the simplest 
number less than x  +  1, and if zero the simplest number of alL [These state
ments follows from the usual definition of integers as sums erf 1 or — 1.]

For n > 0, we double z =  {x -  (1/2") | x  + (1/2")} to see that 2z is the 
simplest number between z + x -  (1/2") and z + x  + (1/2"). Since z certainly 
lies between x  — (1/2") and x  +  (1/2") these limits are between 2x — (1/2"_1) 
and 2x +  (\/2 '~ l\  and by induction 2x is the simplest number between 
these limits, so that 2z = 2 x ,z  = x.

Theorem 12 justifies all the assertions of Chapter 0 about numbers bom 
on finite days. Every such number is a dyadic rational number, that is, a 
rational number of the form m/2". Of course, we can speak of “the” rational 
number p/q without ambiguity, since we have shown that No is a totally 
ordered Field, and therefore contains a uniquely defined image of each 
rational number, supposed defined in any of the usual ways.

CONTAINMENT OF THE REAL NUMBERS

Definition, x  is a real number if and only if — n < x < n for some integer n, 
and

x = (x 1, X j, X j, .. . [ X 1, X 4“ X *+■ j, . . .},

or in short, x =  {x -  ( l/n ) |x  +  (l/n)}„>0- [It is to be understood that n 
ranges over the positive integers.]

T heorem  13. (i) Dyadic rationals are real numbers.
(ii) — x, x +  y, and xy are real if x and y are.

(iii) Each real number has a unique expression in the form {L | R}, where L  
and R are non-empty sets o f rationals, L  has no greatest, R no least, and there 
is at most one rational in neither L  nor R. Also, y* < y e L  implies / eL, 
z' >  z g R implies /  e R.

(iv) Each section {L| R] as in (iii) equals a unique real number.

Proof, (i) follows from Theorems 11 and 12. (ii) follows from the formulae 
defining the operations (it might be helpful to use the version of the product 
formula in the note before Theorem 8). As for (iii), for any real number x, let L 
= the set of rationals less than x ,R  = the set of rationals greater than x. Then L 
and R are non-empty by the condition -n  < x < n for some n. Also every 
member of L is less than x -  (1/n) for some n, and so we can add l/2n and still 
be less than x. This shows that L has no greatest, and similarly R no least, 
member. A rational in neither L nor R must equal x, so at most one is in neither. 
Since the expression is obviously unique, this proves (iii).
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As for (iv), note that {L | R} is certainly some number, x, say, and that easily 
— n < x < n for some integer n. So we need only show

But since L has no greatest, for any y e L  we have y +  (1 /n)e L for all 
sufficiently large n. This shows that for sufficiently large n there is a member 
of L greater than x -  (1/n) and similarly a member of R less than x +  (1/n), 
which suffices.

Note. We could obviously replace rationals throughout by dyadic rationals 
in (iii) and (iv). On doing so, we deduce that every real number not a dyadic 
rational is born on day co, as asserted in Chapter 0.

Summary. The real numbers as defined here behave exactly like the real 
numbers defined in any of the more usual ways. So we shall use the name 
R for the set of all real numbers.

We have here regarded the ordinary real numbers and their theory as 
known, so that Theorem 13 merely serves to identify “our” real numbers with 
the familiar ones. But of course one could use our ideas to give a new logical 
foundation for the real numbers. We digress to discuss the usual classical 
treatments and the advantages and disadvantages of the possible new 
approach.

Figure 1 shows the lattice of inclusions between the sets Z, Q, R of integers, 
rationals, and reals, and the corresponding sets Z +, Q +, R+ of positive

THE LOGICAL THEORY OF REAL NUMBERS

Fig. I.

elements. [It does not matter very much whether we add here the number 
0 or not.] We shall suppose Z+ and its properties already known. Then one 
sees at once that there are several possible paths through the lattice from Z +
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to R. Some experience in teaching convinces one that there is a unique best 
possible path, which is not one that seems natural at first sight!

For X =  Z or Q or R we can proceed from X+ toX by introducing ordered 
pairs (a, b) meaning a — b, and the equivalence relation (a, b) ~  (c, d) iff 
a +  d = b +  c. [The alternative of adding new elements 0 and —x (x e X+) 
leads to too much case-splitting.]

Similarly we can proceed from Z to Q or Z + to Q + by introducing ordered 
pairs (a, b) meaning a/b and the equivalence relation (a, b) ~  (c, d) iff ad = be.

We proceed from Q to R or Q + to R+ by the method of Dedekind sections, 
or that of Cauchy sequences.

In practice the main problem is to avoid tedious case discussions. [Nobody 
can seriously pretend that he has ever discussed even eight cases in such a 
theorem—yet I have seen a presentation in which one theorem actually had 
64 cases!] Now if we define !R in terms of Dedekind sections in Q, then there 
are at least four cases in the definition of the product xy according to the 
signs of x and y. [And zero often requires special treatment!] This entails 
eight cases in the associative law (xy)z = x(yz) and strictly more in the distri
butive law (x +  y)z = xz + yz (since we must consider the sign of x +  y). 
Of course an elegant treatment will manage to discuss several cases at once, 
but one has to work very hard to find such a treatment.

This discussion convinces me that if one is to use Dedekind sections then 
the best treatment does not use the branch of our lattice from Q to R, and 
so must be the unique shortest path passing through M+. This seems sur
prising, since the algebraic theory (introduction of negatives and inverses) 
should naturally be logically prior to the analytic (limits, etc.).

[The reader should be cautioned about difficulties in regarding the 
construction of the reals as a particular case of the completion of a metric 
space. If we take this line, we plainly must not start by defining a metric 
space as one with a real-valued metric! So initially we must allow only 
rational values for the metric. But then we are faced with the problem that 
the metric on the completion must be allowed to have arbitrary real values!

Of course, the problem here is not actually insoluble, the answer being that 
the completion of a space whose metric takes values in a field F is one whose 
metric takes values in the completion of F. But there are still sufficient 
problems in making this approach coherent to make one feel that it is 
simpler to first produce R from Q, and later repeat the argument when one 
comes to complete an arbitrary metric space, and of course this destroys the 
economy of the approach. My own feeling is that in any case the apparatus 
of Cauchy sequences is logically too complicated for the simple passage 
from Q to R—one should surely wait until one has the real numbers before 
doing a piece of analysis!]

This discussion should convince the reader that the construction of the
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real numbers by any of the standard methods is really quite complicated. 
Of course the main advantage of an approach like that of the present work is 
that there is just one kind of number, so that one does not spend large 
amounts of time proving the associative law in several different guises. 
I think that this makes it the simplest so far, from a purely logical point of 
view.

Nevertheless there are certain disadvantages. One that can be dealt with 
quickly is that it is quite tricky to make the process stop after constructing 
the reals! We can cure this by adding to the construction the proviso that if 
L is non-empty but with no greatest member, then R is non-empty with no 
least member, and vice versa. This happily restricts us exactly to the reals.

The remaining disadvantages are that the dyadic rationals receive a 
curiously special treatment, and that the inductive definitions are of an 
unusual character. From a purely logical point of view these are unimportant 
quibbles (we discuss the induction problems later in more detail), but they 
would predispose me against teaching this to undergraduates as “the" theory 
of real numbers.

There is another way out If we adopt a classical approach as far as the 
rationals Q, and then define the reals as sections of Q with the definitions of 
addition and multiplication given in this book, then all the formal laws have 
1-line proofs and there is no case-splitting. The definition of multiplication 
seems complicated, but is fairly easy to motivate. Altogether, this seems the 
easiest possible approach.

[Perhaps I may add some comments about the multiplication definition. 
In fact the whole theory was developed even as far as a version of the canonical 
form theorem of Chapter 3 before any general notion of product appeared, 
and at first the product was defined in terms of canonical forms. Only several 
weeks’ hard thought, sustained by the conviction that there must be a “genetic” 
definition, finally led to the “correct” formula. The genetic definition of l/x  
at the end of Chapter 1 only appeared a year later.]

CONTAINMENT OF THE ORDINAL NUMBERS

Definition, a is an ordinal number if a has an expression of the form a -  {L | }. 
[Note that oc is then automatically a number.]

Theorem 14. For any x, the class of all ordinal numbers ^  x is a set {i.e. not 
a proper Class).

Proof. Since there is no a*, the condition a jp x  implies a <  some xL, and 
so a <  x f  or a =  xf. Since the collection erf a <  any particular x f  is a set by 
induction, a belongs to a union of a set of sets, and so to a certain set.
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Theorem 15. For each ordinal a, we have a = {ordinals ft < a\}.  In any 
non-empty Class C of ordinals there is a least. For any set S o f ordinals there 
is an ordinal a greater than every member o f S.

Proof. The first part is immediate from the simplicity theorem and the fact 
that the collection of P < a is a set. For the second part, we observe that the 
collection L  of all p less than all a e C is a set, for since C is non-empty L 
is included in the set of all P < some aeC.  Then defining <5 =  {L | }, we find 
that for all a. e C we have a >  6, since there is no or*, and we never have 
a <  5L. Then if a >  5 for all a e C, we get S e L, so 5 < 6, a contradiction, 
and so 5 must be equal to some member of C. Finally, the ordinal {S | } is 
greater than every member of S.

Summary. We have proved enough to show that there is a one-to-one 
order-preserving correspondence between the ordinal numbers as defined 
here and as defined in any of the more usual ways. So we shall use On for the 
Class of all ordinal numbers.

Note. We have regarded the ordinal numbers and their properties as 
known, so that Theorem 15 merely identifies “our" ordinal numbers with the 
familiar ones. Naturally it would be possible to develop the logical theory 
of ordinals directly from our approach. But the standard set theory of 
Zermelo and Fraenkel does not seem to be the right vehicle in which to 
develop such a suggestion, since obviously it should be modified so as to 
allow two notions of membership (Left and Right) first There is no logical 
problem, but we prefer to postpone the discussion till later.

The reader should be aware that the operations a +  P and ap  as defined 
here are not the usual ordinal operations, but rather the maximal sum and 
product (sometimes called the natural sum and product) which can be 
obtained by treating the Cantor Normal Form like a polynomial. [The 
maximal sum a +  p is the largest order-type of any well-ordered set A u  B 
for which A and B have the respective order-types a and p. The ordinal sum 
is the order-type of such a union in which A precedes B. There are similar 
definitions of the two product notions.]

We consider a generalization of the Cantor Normal Form in Chapter 3, 
and in the first part of the book we shall define an operation G:H  (for all 
games G, H) which will generalise the notion of ordinal sum.



CHAPTER 3

The Structure of the General Surreal Number
We admit, in Geometry, not only infinite magnitudes, that is to 

say, magnitudes greater than any assignable magnitude, but infinite 
magnitudes infinitely greater, the one than the other. This astonishes 
our dimension o f brains, which is only about six inches long, five broad, 
and six in depth in the largest heads.
Voltaire, Article ''Infinity", in A Philosophical Dictionary, Boston 1881

We return to the tree of numbers sketched in Chapter 0, and make precise 
some of the notions described there. Greek letters tx,p ,y ,... will denote 
arbitrary ordinal numbers.

For each ordinal a we define a set Ma of numbers by setting x  =  {x1, | x*} 
in Ma if all the x1, and x* are in the union of all the Mf  for ft < a. Then we set 
Oa = (J and N , = M , \  Oa. Then in the terminology of Chapter 0

(to which we shall adhere):
is the set of numbers bom on or before a (Made numbers),

Nt is the set of numbers bom first on day a (New numbers), and 
Oa is the set of numbers bom before day a (Old numbers).
Now each x e Nt defines a Dedekind section L, R of Oa, if we set 

^  =  { y e O jy  < x}, and R = {y e Oa | y >  x}.

Since the simplicity theorem tells us that then x =  {L | R}, we can regard 
M = 0  u  N , as the union of 0  together with all its sections, in the naturalat a « ct w
order.

Now let x e Na. Then for each p < a, x  defines a section in Of , and this 
section defines a unique point x f  e N f . We call x^ the fith approximation to 
x, and extend the definition by writing x f  = x for all p ^  a. The reader who 
glances at Figure 0 will see that the successive approximations to yJ2 are 
0, 1, X l it  lft • • • t yJX 0 being the 0th approximation and y/2 the aith. 
These numbers arc just the nodes above yj2 on the tree.

29
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T heorem  16. Every number x  is in a unique set Na.
(The ordinal number a is called the birthday of x.)

Proof. We suppose this is true of all x1, x*. If p is some ordinal greater than 
the birthdays of all xf, x R, then x is certainly in Mf , and so in some Na, 
a. <  p.

This theorem assures us that the successive approximations are defined 
for all numbers x, and they “converge” to x in the sense that they all coincide 
with x for sufficiently large p.

Now for each p < a (the birthday of x) we define a sign sf  (+ or - )  as the 
sign of the number x -  xf . We extend the definition by writing sf  =  0 for 
all P ^  a. In this way, we have assigned to each number x a sequence of signs 
+  or — below some ordinal, 0 beyond, which we call the sign-expansion of x.

We now order such sign-sequences lexicographically by the conditions:

(s) < (r) iff for some a we have

sf  = tf  for all P < a, but sa < tt , 

it being understood that — < 0 < + .

T h e o re m  17. Let x and y have sign-expansions (s) and (t). Then we have 
x < y, x  = y, x > y  according as (s) <  (t), (s) = (t), (s) >  (r).

Proof. If (s) <  (t), suppose sf  = tf  for all P <  a, but s. <  tm. Then xf  = yf  
by induction for all p < a, but xa < ya. (It is obvious that the sign-expansion 
of xf  is simply that of x truncated by making sy = 0 for all y >  P). The 
sections defined by x and y in Oa now show that x <  y. If (s) = (r), we find 
that x and y define the same section of Oa> where a is their common birthday, 
and so x = y.

T h eorem  18. For an arbitrary sequence (s) of signs +  or — below some 
ordinal a, 0 beyond, there exists a number x  whose sign-expansion is (s).

Proof. Let s(P) denote the expansion truncated at P—that is to say, the 
sequence (t) defined by ty =  sy (y < p \ ty = 0 (y > P). Then by induction, 
for each P < a, there exists a number xf  whose sign-expansion is s(P). Then 
we consider the number

x = {xf  for which s(P) < (s) | x f  for which s(P) > (s)}.

Plainly the birthday of x is at most a, and sf  is the sign of x -  xf  for all 
P < at, so that x has the desired signs.

Summary. The correspondence between numbers and their sign-expansions 
is one-to-one and order-preserving.



THE CO-MAP 31

We regard these results as justifying all assertions made about the tree of 
numbers considered in Chapter 0, extended to all possible ordinal depths.

Here is a simple rule, due to Elwyn Berlekamp, by which we can read off 
the value of a real number from its sign-expansion. We can suppose that the 
expansion begins with a + , for we change signs of numbers by changing all 
the signs in their expansions. If the expansion consists just of n +  signs, the 
number is n. Otherwise, bracket the first -  with the preceding + , when the 
number of +  signs before the bracket defines the integer part, and the signs 
after the bracket yield the ordinary binary expansion of the fractional part 
when we read 1 for +  and 0 for —, adding a final 1 when the expansion is 
finite.

Thus +  +  +  +  — H yields +  +  +(H— ) + ---- = 3* 1001 = 3 ^ . In
short, the signs before the bracket are interpreted in “unary”, those after in 
binary. The rule can be extended so as to yield the sign-expansions of, for
instance, real multiples of co. Thus since H 1- is the expansion of J,
+ •  — “ +“ is that of \co. We shall give later the general rule by which one 
finds the sign-expansion from the canonical form (see below) or vice versa. 
Sign-expansions are connected with the generalisation G:H  of the ordinal 
sum that appears in the theory of many games, notably the unimpartial 
form of Hackenbush. The sign-expansion of x \y  is obtained by following that 
of x  by that of y.

TH E ©-MAP

We now define a function co* that plays an important role in the theory, and can 
be thought of as the j^1 power of (0. More precisely, this is an ordinal power, which 
is not an instance of the “analytic” power operation ^defined on page 38.

We say that positive numbers x  and y are commensurate if for some positive 
integer n we have x < ny, y < nx. Plainly this is an equivalence relation 
whose equivalence Classes are convex (that is, if x < z < y  and x  and y  are 
commensurate, then z is commensurate with both). It follows that there is a 
unique simplest number in each commensurate class, and these numbers we 
call leaders. We obtain the co-map by letting co° be the simplest leader of all 
(namely 1), then co1 and co~1 be the simplest leaders to the right and left of 
co° (namely co and 1/co), and so on. [Thus co* will be the simplest leader 
between co* and co1.] The same effect is achieved by the more formal definition

co* = {0, rco*L | rco**}

where r denotes a variable ranging over all positive real numbers. (We shall 
also use s in this sense.)
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T heo rem  19. Each positive number is commensurate with some of.

Proof. We can write x in the form {0, x f  \ x*}, where x f  and x* now denote 
positive numbers. Each x f  is commensurate with some a / - (say) and each 
x* with oP*. If x is commensurate with one of its options, we are done. If 
not, we can add all numbers ra ff  as Left options and all rof* as Right 
options, and we then see that x =  of, where y  is the number { ) f  | y*}.

T h e o re m  20. co° = 1, co~x =  1 /o f ,  o f +y =  co* .o f .

Proof. The first part is trivial, and the second follows from the first and 
third. Let X  = to*, Y =  of, and let X ' and Y' be the typical options of X  and 
Y. Then the typical option of X Y  is X 'Y  + X Y ' -  X'Y'. If Y' is 0 , this is 
X'Y, and if X ' is 0, it is XY'. Otherwise we can suppose X ' =  ret)*', Y' =  set/, 
when the formula becomes

ro f'+y +  s o f+y' — rsojx+y'

by induction.
When this is positive, it lies between two positive real multiples of of, 

where z is the largest of the three indices, which is always one of x' +  y and 
x +  / .  We have said enough to show that

cox . o f  — {0, ro fL+y, s o f+yL | ra)x*+y, s a f +yK} =  oix+y.

Summary, o f  does indeed behave like the xth power of co. Those familiar 
with the normal arithmetic of ordinals will have no difficulty in showing 
that o f  is the ordinal usually so called.

THE NORMAL FORM OF x

Let x be an arbitrary positive number, and o f0 the unique leader commen
surate with x. Then we can divide the reals into two classes by putting t into 
L ot R according a s o f ° . t ^ x  or o f 0. t > x .  Then L  and R are non-empty, 
since for suitably large n we have — n e L ,  n e R ,  and so by the theory of 
real numbers, one of L  and R has an extremal point r0, say. Write

x = o f° . r0 +  Xj.

It follows that x , is small compared to x, that is, that nx, is between x and 
- x  for all integers n. If xt is not zero, we can produce in a similar way num
bers rv yx such that x x = o f 1 . r x + x2, where x2 is small compared to x y.

If again x2 is non-zero, we can continue, producing an expansion

x = o f0. r0 +  o f 1. rx +  . . .  +  o f ' - 1 ■rH_l +  xm 

which will terminate painlessly if any x„ is zero. But usually the expansion
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will continue for more than co steps, so that we must say exactly what we 
mean.

Suppose that for each P <  some a we have already defined the fi-term 
<£?*. of x. Then we shall define the formal sum £  (oy>. rf  to be the simplest

number whose /?-term is a9*. rf  for all P < a. Write x — £  co**. rf  +  x#.
fi<a

Then if xa is zero we define the a-term of x  to be 0, and otherwise a)3'*. ra,
where co!m is commensurate with | xa | and xa -  aP*. ra is small compared
to x This defines the a-term for all ordinals a.* _

Now for each a the partial sum £  coyf . rf  is the simplest number having
fi <*

the same /?-terms as x  for all P < a, and so all these partial sums must belong 
to the set M y, where y is the birthday of x. It follows that the partial sums 
cannot be distinct for all ordinals a, so that the a-term must vanish for some 
a, and so for all subsequent a. We have therefore proved:

T heorem 21. For each x we can define a unique expression £  a? * . rf ,
fi<a

(the normal form of x) in which a denotes some ordinal, the numbers rf  (P < a) 
are non-zero reals, and the numbers yf  form a descending sequence of numbers. 
Normal forms for distinct x  are distinct, and every form satisfying these 
conditions occurs.

(The last sentence is easy.)

This theorem can be interpreted as showing that the structure of No as 
a Field can be obtained from its structure as an additive Group by means of 
the Malcev-Neumann transfinite power-series construction. (The Malcev- 
Neumann construction in general is discussed in P. M. Cohn’s “Universal 
Algebra”, p 276.) But the following discussion shows that this remark does 
not suffice in itself for a definition of the arithmetic structure of No.

In the next chapter we shall use normal forms to see that the Field No 
is real-closed. In the rest of this one, we shall merely use them to examine 
some particularly interesting numbers.

IRREDUCIBLE NUMBERS

Can any index in the normal form of a have the same birthday as a? If not 
then the normal form yields an expression for x in terms of (real and ordinal 
numbers and) simpler numbers, so that we can call x reducible. Suppose the 
index ya in the a-term of x has the same birthday as x. Then it is easy to see 
that co3’" . ra is the last term in the normal form of x, and that ra =  ±1. [This 
is because the numbers

I  co”  ■ rf ±  gP"
fl<a
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are constructed strictly before

£  aj" .rf  + ((o'". ra + smaller)

if the bracketed term here is not 
So in this case, we can write x = x! ±  of', where x! is bom before x, a f  is 

small compared to x, and y  has the same birthday as x. If y  is reducible in the 
sense above, then by inserting the normal form for y we obtain an expression 
for x in terms of simpler numbers, and so we regard x as reducible in this 
case also. In the hard cases, we shall find

x =  x' ±  to* y = yf ±  o f, z =  /  ±  co',. . .  (to just co terms).

It is only these numbers which we shall finally call irreducible.
The irreducible numbers generalise the concept of ordinal e-numbers, and 

it is not hard to see that the birthday of any irreducible number is an e-number.

CONTINUED EXPONENTIAL S FOR IRREDUCIBI ES

The continued exponential expression for the number x we have just con
sidered is

. ±of ±a''
X =  x ' ±  a?' 

which we write as

x = xf ± eo7’ ^ co*' o f' co ’"

so as to keep it on one line (almost).
It is important to realise that this expression does not determine x, since 

in fact there will always be many numbers with the same continued expo
nential. We shall only discuss this briefly and informally.

For the moment, let £  stand for the formal expression

-L. J> ±  C ±  •••a ±  or o f co .

The first number to be born with this as its continued exponential will be 
called E0, or just E. At later times, there will be constructed other numbers 
with this expression both to the left and right of E0. The first of these will be 
called £ _ x and £ , respectively, and then E2 will denote the first which is 
to the right of £ , ,  £^ the first between £0 and £ ,, and so on, defining Ex for 
every number x.

The following examples will show why £x exists for all numbers x. Let e
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denote the particular expression with a = b = c = . . .  = 0 and all signs + , 
or more simply,

£ = cu®" .

Then e0 (or simply e) denotes the first ordinal E-number greater than cu, 
namely the number

{cu, co®, cu®",. . .  |

and £, denotes the next £-number

(e + 1, cu*+1, . . . | },

and so on. [This is the usual notation for the ordinal e-numbers.]
What is £_ j? This must be to the left of e, and (being a leader) therefore to 

‘the left of e -  1, thence ofcu*- l ,cu®*~\ and so on. But considering the number

S = {ordinals < e | e — 1, cu*-1, cu®*'1, . ..}

we find it quite easy to prove that 5 =  cu*, so that S has indeed the continued

exponential expression <u®“ . Again, since in fact S is the first number

constructed left of £ with this expression, we have S = £_t = [eu®“ ] _ r  
It seems reasonable to think of 5 as the simplest £-number which is not an 
ordinal number.

In a similar way, we see that the number e_i  is defined by

= {5 +  l , toa+1, | e  -  l,cu*- 1,cu®*'

It is easy to show that these generalised £-numbers are precisely the solutions 
of the equation x = cu*.

In a similar fashion we can show that the equation x = cu- * has a unique 
solution

and that more generally if we write

x =  [cu-“ -  [cu "  J_ „

then we have x = co~y, y =  cu- *.
Of course these notations do not enable us to express every number in 

terms of earlier constructed numbers, since there will even be some numbers 
x associated with any given E which satisfy x =  Ex. The first of these we 
should naturally call £  £  , the next bom to the left of this being

£ £
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, and so on. But even before one makes the obvious extension 

-1
of our notation, there are other numbers to be considered, such as £  p

where E ,F ,G , . . .  are possibly different continued exponential expressions.
However, we now have a notation-system which is rich enough for all 

practical purposes, and is perhaps comparable with the usual system of 
notation for ordinal numbers.

SIGN-EXPANSIONS AND NORMAL FORMS

Consider a number Zcoy . ry in normal form. How do we find the sign- 
expansion of this number given those of the y and ry? We first cope with the 
effect of the condition that the terms are to be summed in descending order 
of y. We shall call the sign Yt  in the sign-expansion [ 1 ^ , Y{, . . . ]  of y 
irrelevant if the number with sign-expansion [T0, . . . ,  1̂ , is greater 
than or equal to some x  > y  with rx #  0. Then the relevant sign-expansion 
of y  is that obtained by omitting all the irrelevant signs from its ordinary 
sign-expansion.

Now suppose our number is written as o f . r + a ? . s +  to*. t +  . . .  so 
as to display only the non-zero terms in its normal form. Then it turns out 
that its sign-expansion is obtained by juxtaposing those of x, r, y, s ,z , t , . . .  
with each term repeated a power of co times, except that the signs of r, s, t , . . .  
affect the entire expansions of x, y, z ,. . . ,  and irrelevant signs are omitted.

To be precise, suppose that x , y , z , . . .  have relevant sign-expansions
i<«’ and that r, s, t , . . .  have (ordinary) sign- 

expansions [R0, R v . . . ] ,  [S0,S j , . . . ] ,  [TJp T j , . . . ] ,—  Then the sign- 
expansion of cox . r + a ? . s +  co*. t +  . . .  is
IV  V  P  V0»< o + 1  / V P  !> « * •  p a * "
L I "  0  0 '  * • • • » ^  0 '  • • • • t  A . j  ,  i v  j

( w * *  \  • • ■•.  ( Y & r 1 * * 1 ................... ................................................................

(Z0r 0r* °+1, . . . ,  ( Z J J * * 1, . . . ,  77*. r j *  .],
where for each S < a, et  denotes the (ordinal) number of +  signs among the 
numbers X t (e < <5), and the numbers / 3, gt , . . .  are defined similarly for the 
numbers y, z , . . . .

(The simplest proof is obtained by considering the sequence of successive 
approximations to co*. r +  co’ . s +  co*. t +  . . .  in their normal forms. Any 
such approximation is either a partial sum of the given normal form, or else 
differs from such a sum only in its final term.)
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GAPS IN THE NUMBER LINE

Treading perhaps on rather thin ice, we now consider Dedekind sections 
(L, R) of No itself. Of course such a section, which we call a gap, consists of 
two disjoint Classes L, R whose union is No, with every member of R exceed
ing every member of L  If S is this gap, and x a number, x +  S is the gap 
(x +  L, x +  R), - 3  the gap ( - R ,  -L ) ,  and co8 the gap (L, R') for which L' 
contains all numbers co', s and R' all numbers co'.s, where l e L ,  r e R, and 
s is any positive real.

Our theory of normal forms is easily extended to cater for gaps. In fact 
any gap has one of the two forms

£  (1) 
f i e On

£  co*' . rf  ±  co8' (2)
0<a

where in each case the sequence (x f) is decreasing and each rf  is a non-zero 
real number, and in the second case S' is a gap (£, R)  for which R' contains 
all the xf  (fi <  a). In the first case the number Ico*' . rf  +  co**. (r£ #  rj  is
in L  or R according as ^  <  ra or r^ > ra.

The gaps definable as upper or lower bounds of sets are particularly impor
tant in the theory of games. It follows from the preceding remarks that any 
such gap has the form (2), where S' is another gap of the same kind. Conse
quently we can continue, defining a sequence of numbers x„ and gaps S. so that 
SB =  x  ̂ i  co8"*1 and the gap E = 3 0 has a continued exponential expression

3  = x0 ±  co*1 co*2 ^  co " .

The gap is not determined by this expression however—for instance (No, 0 )  
and the upper bound of all ordinals less than e0 both have the continued

exponential co®" ’ .
Some gaps are important enough to deserve names. We use

“On” for the gap (No, 0 )  at the end of the number line,

t t  | n

—  for the gap between 0 and all positive numbers,

Moo” for the gap between reals and positive infinite numbers, and
(t |  H

— for that between infinitesimals and the positive reals.
00
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(This notation has been considerably extended in Winning Ways.)
For these gaps, we have

On = to0", —r  = or0", °o = <oi/0b, —  = o rl,0n,On °°

from which we can deduce their continued exponentials.
As an example of a gap of the first kind, we give the normal form

E* = 1 + o r1 + ur2 + ... + Gr“ + ... + or* + ...,

summed over all ordinals a , and as an example of a gap of the second kind that is 
not the upper or lower bound or a set we give or*. There are also gaps of this sort 
with infinite continued exponentials, for example e_,, in an obvious notation.

Just as we speak of an infinity of objects when the collection of them is not 
finite, it seems natural to speak of a University of objects when the Collection is 
a Proper Class. But the collection of all gaps is not even a Proper Class, being an 
illegal object in most set theories. Informally we may call it an IMPROPER 
CLASS, and speak of there being an IMPROPRIETY of gaps! There are very 
many gaps indeed. But we committed no impropriety in our discussion of them, 
which could all be formalised in such a way that at no point did the argument 
refer to more than one gap at a time.

Martin Kruskal has given a definition of exp(jc) for all surreal numbers x, in 
which the options have the form 0 or exp(x') • £ (*  -*')» where En(t) -  1 +?+. . .  + 
f/n\  and there are some obvious restrictions on n and x'. It is easy to see that this 
function satisfies exp (x + y) = exp(jt) • exp(y) and is the inverse of the logarithm 
function that had been defined earlier using Simon Norton’s integral of 1/x, for 
which see the Epilogue.

Using these functions, we can define xy in the usual way as exp(y log(x)). This 
analytic power has all the right properties, but the reader is warned that the co-map 
of this chapter is not a particular case of it; for example, the number {1, co, co2, co3, 
... I} is exp(co) = eP rather than the analytic co“.



CHAPTER 4

Algebra and Analysis of Numbers
Now as to what pertains to these Surd numbers (which, as it were 

by way o f reproach and calumny, having no merit o f their own, are also 
styled Irrational, Irregular, and Inexplicable) they are by many 
denied to be numbers properly speaking, and are wont to be banished 
from Arithmetic to another Science (which yet is no science) viz., 
algebra.

Isaac Barrow, "Mathematical Lectures", 1734

In this chapter we show how the new numbers we have constructed are 
related to the real and complex numbers that are more familiar to the 
mathematician.

INFINITE SUMS

Suppose that to each number y we assign a real number r , with the restric
tion that ry must vanish whenever y does not belong to a certain descending 
sequence (y • /? <  a). Then we define the formal sum ]T cip.r to be the

y » N o

value of the sum L  a / '  ■ r. as defined in the previous chapter.
p<«

T h eorem  22.

y  C0y .ry + £  Cb>.sy = X  a? (ry + Sy).
ymNo yeNo yeNo.

Proof. This follows easily from the formula

£  oj>.ry = j x  oP.ry + co‘ .r f  X  ^  ry + <u‘ -r?j
v y > x  y > 2  J z e N o

The apparent appearance of a proper Class of numbers within the brackets 
is an illusion, since there is n o r f o r r f  for i  outside a certain set.

Summary. The formal sums we encounter when dealing with normal forms 
have properties compatible with finite sums.

39
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This result allows us to define various more general infinite sums. In 
general we shall write the normal form of a number x in the form £  co*. r̂ ,

i
it being understood that the sum is over all y e No, and that the numbers ry 
satisfy the required conditions. If now we have a set or sequence of numbers 
xH =  £  co*. rH y, then we say that the sum £  x, is convergent to x (in some 

y ' "
sense) if and only if all the real number sums are convergent (in the

n *
.same sense) to sums r , say, and x is the number Y,co> .ry, and furthermore all 
the rH J vanish for all y  not in some descending sequence ( y ^ fi  < a). This 
last restriction is quite essential to prevent certain absurdities—without it 
we should have

(1 -  to) + (co — a)2) + (co2 -  co3) + ... = 1,

in which an infinite sequence of negative numbers has positive sum. We call 
a number infinitesimal if it lies between — r and r for every positive real 
number r.

T he o r e m  23. A power series with real coefficients is always absolutely 
convergent for all infinitesimal values o f the variable.

Proof This requires only the (rather subtle) theorem that if {yf } is a re
versely well-ordered subset of negative numbers in a totally ordered group, 
then so is the set of all finite sums of the yf . We quote this theorem. [A direct 
proof is not hard, but the theorem really belongs to a large Class(!) of 
combinatorial theorems about well-ordered sets which do not really concern 
us here. The particular result we want is proved, for essentially the same 
application, in Cohn’s treatment of the Malcev-Neumann construction.]

T h eo rem  24. Every positive number x has a unique positive n-th root, for 
each positive integer n.

Proof. By considering the normal form of x, we see that we can write
x =  a? ,r. (\  + S)

where S is some infinitesimal number. Then the number

is an nth root of x. The uniqueness is obvious.

ROOTS OF ODD-DEGREE POLYNOMIALS 

Let /(x) =  x" +  Ax*-1 +  fix"- 2 + . . .  + K  be some polynomial of odd
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degree. We intend to show that /  has a root in the Field of all numbers.
By translating x by a suitable number, we can suppose that >4=0.  Then
unless the polynomial is the rather trivial polynomial x" (which has the root 0), 
we can replace x by rx for some number t so as to ensure that

max ( | B |, | C |........ | K | ) =  1.

Then /(x) takes the form

x" +  (b +  0)x"-2 + (c + y)x*~3 + . . .  + (k  + k),

in which b, c, . . . ,  k are real numbers not all zero, and /?, y , . . . ,  denote not 
ordinals but infinitesimal numbers.

For a first approximation, put /? =  ? =  . . .  =  0. Then the resulting 
polynomial has a factorisation

(x -  p f ' . (x -  qY2. . .  (x -  rfJ

in which p,q r are distinct complex numbers. Moreover, since the
sum of the roots is zero, we must have j  >  2.

We can now group the complex numbers in conjugate pairs to obtain a 
factorisation

/ i  {x).f2( x ) . . . f / x )

in which the / ,  are polynomials with real coefficients, and no two of the f t 
have a common root. Moreover, we still have J  >  2 since the degree of /  was 
odd.

Now put back the numbers f} ,y, . . . ,x ,  but regard them for the moment as 
small complex numbers. Then the perturbed polynomial has a correspond
ing factorisation whose coefficients are analytic functions of f i , y , . . . ,x ,  
which can therefore be expressed as power-series in these variables, convergent 
for sufficiently small values of them. (The assumption that the f t have roots 
distinct from each other is needed to prevent these analytic functions from 
having branch-points at the origin.) These power-series will certainly 
converge for infinitesimal values of y , . . . ,  k, and so we obtain a non-trivial 
factorisation of /  whose coefficients are numbers. So we have

T h eo rem  25. Every odd-degree polynomial with coefficients in No has a root 
in No.

Proof. This follows from the above argument by induction, since at least 
one of the factor polynomials will still have odd degree.

Now Gauss' third proof of the so-called fundamental theorem of algebra 
shows essentially that if we have any field in which for each x either x or 
- x  has a square root, and every odd degree polynomial has a root, then we
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obtain an algebraically closed field by adjoining a square root i of — 1. 
(Artin has made this the basis of his elegant theory of real-closed fields.)

So we have:

T heorem  26. The Ring No[i] of all “numbers” of the form x  + iy(x, y e  No), 
i2 = — 1, is an algebraically closed Field.

If we do not wish to adjoin i, we may make effectively the same assertion 
by saying that No is itself a real-closed Field.

Using the axiom of choice, it is quite easy to see that No[i] is as an abstract 
Field the algebraic closure of the Field obtained from Q by adjoining a 
“University” of independent transcendentals (that is, one for each member of 
the Universe). A theorem of Artin’s now enables us to deduce a characterisa
tion of No as an abstract Field. Summing up:

T h e o r e m  27. No[i] is characterised up to Field isomorphism by thefact that it 
is the algebraic closure o f the rationals extended by a University o f trans
cendentals.

And now Artin’s theorem asserts that any field whose algebraic closure 
is only a finite extension is either algebraically closed or real-closed, in the 
latter case under an order which is unique up to field isomorphism.

Of course No has much more structure than this, so that Theorem 27 
is in no sense a substitute for the definition of No. For when we consider it 
together with its collection structure (L | R}, No has plainly only the identity 
automorphism. We now give an alternative characterisation of No as a 
totally ordered Field.

We say that a Field F (necessarily a proper Class) is universally embedding 
if each (set) subfield f  of F which as an abstract totally ordered field can be 
extended to a field g is already contained in a subfield g of F isomorphic 
to g, the isomorphism restricting to the identity on / .

T h eo rem  28. No is a universally embedding totally ordered Field.

Proof. (The proof uses the axiom of choice.) We need only tackle the in
ductive step, which is when g is obtained from /  by real-closure after the 
adjunction of a single new element x. We consider all polynomials in x  
with coefficients in / .  Then using the real-closure of No and the fact that 
every section of /  contains points of No we can produce an x in No for which 
the corresponding polynomials have the same signs as at x. We take g as 
/  extended by x, with the isomorphism taking x to x, and then real-close so 
as to preserve the order.

Finally, we see that this property again defines No as an abstract Field.
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T heorem  29. Any universally embedding totally ordered Field is isomorphic 
to No.

Proof. The proof uses the fact that all proper Classes have the same 
“Cardinal”, which follows from the axioms of choice and foundation 
(and which was taken as an axiomatic definition of proper Class by von 
Neumann!) Using this, we can well-order the elements of No and of F in 
order-type On. We first identify their rational subfields, and then “patch up” 
an isomorphism by alternately finding images of elements of the two Fields 
inside each other, real-closing after each adjunction, and always taking 
the first element (in the appropriate well-ordering) not yet dealt with.

Summary. As an abstract Field, No is the unique universally embedding 
totally ordered Field.

We repeat that No has plenty of additional structure which would not 
emerge from this “definition”.

FURTHER REMARKS ABOUT ANALYSIS IN No

The theory of infinite sums enables us to do quite a lot of classical analysis 
in No (or often more easily in No[i]). Thus various analytic functions can be 
defined on large parts of No by power-series whenever these are convergent 
The exponential series converges for example whenever | x | <  some finite inte
ger n, and defines a perfectly respectable number-function with the expected 
properties inside this region. Similarly we can define sines and cosines, etc., in 
the same region. Logarithms can be defined in the same region (except at 
infinitesimal x) by means erf* the power-series for log (1 +  t) and the formula 
log (nx) = logn +  logx, where n is an ordinary positive integer.

The exponential and logarithmic functions obtained by this general method 
agree (in this region) with the everywhere-defined ones mentioned at the end of 
Chapter 3. But the problem of defining other classical functions outside this 
“bounded” region has still not been solved, although some progress has been 
made by M. D. Kruskal.

It is interesting to note that our definitions of infinite sums have in a 
certain sense to be “global”, rather than as limits of partial sums, because 
limits don’t seem to work. For instance, the limit of the sequence 0, f , f , . . .  
(co terms) is not 1, at least in the ordinary sense, because there are plenty of 
numbers in between. A simpler, but sometimes less convincing, example of 
the same phenomenon is given by the sequence

0 ,1 ,2 ,3 ,...

of all finite ordinals, which one would expect to tend to co, but which obviously 
can’t, since there is a whole Host of numbers greater than every finite integer
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but less than cu. For the author’s amusement, we recall some of the simplest 
of them:

cu -  1, co/2, ,/co, co1'-, [cu- - ] ,  (for all x!),

C0 * ~ " ,  C O * ' * , -------

NON-STANDARD ANALYSIS

We can of course use the Field of all numbers, or rather various smaD sub
fields of it, as a vehicle for the techniques of non-standard analysis developed 
by Abraham Robinson. Thus for instance for any reasonable function / ,  
we can define the derivative of /  at the real number x to be the closest real 
number to the quotient

f [ x  +  (1/co)] -  f(x )
1/a)

The reason is that any totally ordered real-closed field is a model for the 
elementary statements about the real numbers. But for precisely this reason, 
there is little point in using subfields of No when so many more visible fields 
will do. So we can say that in fact the Field No is really irrelevant to non
standard analysis.

[The reader might be tempted to suppose that the subRing of omnific 
integers described in the next chapter was in a similar way a non-standard 
Model for the ordinary integers. But of course this is not so, since for instance 
x2 = 2y2 has many non-zero omnific integer solutions. In fact deep logical 
theorems tell us that we could not hope to find a non-standard model for Z 
in so simple a way.]



CHAPTERS

Number Theory in the Land of Oz
"We're off to see the Wizard,

The Wonderful Wizard o f  Oz /"
After title o f book by L  Frank Baum.

In this chapter we discuss the notion of integer which is appropriate to our 
big Field No.

Definition. [Norton], x is an omnific integer iff x =  {x — 1 | x +  1}. We 
shall use Oz for the Class of omnific integers. In this chapter the unqualified 
word integer will usually mean omnific integer.

T h eo rem  30. (i) 0  is an integer,
(ii) if  x is an integer, so is — x,
(iii) if  x and y are integers, so are x +  y and xy.

Proof These have 1-line proofs.

T h eo rem  31. The number x  =  Z o f . ry is in Oz if and only f r y ~  Ofor y < 0, 
while r0 e Z. Every ordinal number is an integer.

Proof. Define fy =  ry for y > 0, 0  for y  <  0 , and (r0 -  1 | r 0 +  1} for 
y =  0. Then the number x = E a? . fy certainly lies between x — 1 and x +  1, 
and is simpler than or equal to x. So x is an integer if and only if x = x. 
The second sentence now follows.

T h eo rem  32. Every number x is the quotient o f two omnific integers.

Proof. Taking x as above, with ry — 0 for y <  —a (a some ordinal, say), 
we observe that o f  and x o f  are both integers by Theorem 31.

So for example the number n is the quotient of the two integers am and co.

Summary. O z includes On and is a subRing of No, with No as its Field of 
quotients. Every number is distant at most 1 from some omnific integer.
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Definition. An integer is divisible if and only if it is divisible by every finite 
non-zero integer.

T heorem  33. Each integer is uniquely the sum of a divisible and a finite integer.

Proof. If x is the integer T .o /.r^  then r0 is finite and x — r0 divisible. If
r is any finite integer with x  — r divisible, then r — r0 is divisible and so
r =  r0.

T heo rem  34. I f  a and b are integers with b positive, there are unique integers 
q and r with a = bq +  r, 0 ^  r <  b.

Proof Let x  =  a/b, and x the integer {x — 1 | x +  1}, so that
a — b < bx < a + b.

Then if a — b < bx ^  a we can take q =  x, and otherwise q — x — 1. 
Inequalities imply the uniqueness.

When restricted to ordinal numbers Theorem 33 becomes essentially the 
particular case b =  co of Theorem 34. But for general numbers they are quite 
distinct theorems.

Since there is no descending chain condition for omnific integers, Theorem 
34  does not show that these integers have unique factorisation. In fact, for 
example, co has infinitely many distinct factorisations

_ co co . ,
co =  2 .— =  3 . -  =  . . .  =  (y/co)2, etc.

The same thing can happen for indivisible integers, for example

CO +  1 =  (CD* +  1)(©* — CO* +  1) =  (ft)*. +  1)(<»* — . . .  +  1) = -----

But certain other infinite integers appear to be prime, for instance

co + co* + co* +  . . .  -I- 1.

Conjecture. Omnific integers have the refinement property—if ab = cd 
for omnific integers, then there are further integers e, f ig ,  h with a =  ef, 
b = gh,c = eg, d = fh .

WAKING’S PROBLEM

At first sight one is inclined to think that perhaps every divisible integer is, 
like co, a perfect nth power for every finite integer n. But the divisible integer
co2 + co is not even a square, for it lies between the squares of the adjacent
integers co and co +  1. But co2 +  co is the sum of two squares, namely those of 
co and y/co. However, co2 — 1 is not the sum of any number of squares, for then
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their finite parts would be finite squares summing to —1. So Waring’s 
problem fails for squares.

If we allow cubes of negative integers, we can prove, however, that every 
integer is the sum of at most five cubes, by imitating the standard proof for 
finite integers.

For we have the identity .

(x -  l )3 +  (—x)3 +  (—x)3 +  (x +  l )3 =  6x,

and using Theorem 34 we can write any integer in the form 6x — n3, where 
x is integral and n =  0,1,2,3,4, or 5, since the cubes of these numbers 
exhaust the residue classes modulo 6. Just as in the finite case we see that 4 
cubes are sometimes needed (consider numbers congruent to ± 4  modulo 9), 
but again just as in the finite case we do not know whether 4 will always 
suffice.

CONTINUED FRACTIONS AND PELLIAN EQUATIONS

If x is a positive number there is an integer [x] so that [x] ^  x <  [x] +  1. 
Of course [x] is called the integer part of x. Let a be the integer part of x, and 
if x 5* a write x =  a + (1 /y \  Then if y  is distinct from its integer part b, 
write y = b + (l/z), and so on. The process may terminate at a finite stage 
if one of the remainders y, z , . . .  is zero, but otherwise we obtain an infinite 
continued fraction (we use the standard abbreviated notation)

I I I
° +  b +  c +  d +  " '

corresponding to x.
[Those x for which the continued fraction does terminate at some finite 

stage are naturally called fractional numbers, since they are perhaps the 
closest analogue in No of the ordinary rational numbers. If x is fractional, 
so are x +  1, — x, and 1/x (if x #  0), but neither the sum nor the product 
of two fractional numbers need be fractional—consider

— 3—— , and oiyf2,<0 710) + O) O)

The equation x2 -  Ny2 = +1, where N  is a given integer and x and y 
are to be found as omnific integers, is readily discussed in terms of continued 
fractions. Almost exactly as in the finite case, we can show that x/y  must be 
one of the convergents to the continued fraction for J N .  (It is essential to 
note that there cannot exist any solution in which x and y  are too large 
compared with N .) Thus the equation has at most K0 solutions.
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Sometimes the form of the solutions is quite surprising. We consider for 
example the case N  = io +  3.

Here we find successively

yj(a> +  3) = yjco +  ^ , say

u =  £(,/(to +  3) +  y/oo) = jy/ca +  say

V =  y/((D  +  3) +  y/ (0  =  2 y J (0  +  ^  

so that y/(co +  3) yields the periodic continued fraction

/ 1 _L _L
+ sV® +  JO) +  fy/cO + . . .  

whose first few convergents are

y/a> f<o +  1 f(Oy/<o +  3y/<p foj2 +  fm + 1 
1 ’ *y/ai ’ |Q ) +  1 ’ fay/a) + %y/co.........

The alternate ones of these do indeed yield solutions of the equation, namely

(fco +  l ) 2 -  (to +  3 )(fV to )2 =  1

(fco2 + fto + l)2 -  (a) + 3Xfto /̂m + fV®)2 = 1

as can easily be checked.
Not all such equations behave so exactly like the finite case. Although the 

square roots of many simple integers yield periodic continued fractions, 
there are some that do not, for instance y/(<o2 +  2ea>) (where e is the base of 
the natural logarithms) yields the same continued fraction as co +  e, namely

, 1 1 1 1 1  
co +  2 +  — — — — —

1 + 2  +  1 +  1 +  4 +  —

Plainly no convergent of this leads to a solution of the corresponding Pellian 
equation, which is therefore insoluble. Other behaviours are possible. 
(Note in passing that the continued fraction of a number does not always 
determine that number. There does not seem to be any way of extending the 
definition so as to define partial quotients for the cuth stage and beyond.)

Almost every number-theoretical problem can be rephrased so as to 
yield a new problem in Oz, so we get a jackdaw’s nest of problems of various 
kinds. But it seems in general that problems whose usual solution involves
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Gauss’s theory of congruences tend to produce rather trivial generalisations 
in Oz, while those whose normal treatment involves rational approximation 
or cunning algebraic identities produce more interesting problems.

Often we can get even more interesting problems by generalising ordinary 
problems so as to allow infinitely many variables. We mention only one before 
finishing this rather short chapter:

Is every positive omnific integer the sum of a number {possibly infinite) of
positive perfect cubes (of omnific integers)?

The scarecrow will need to take some time to think before giving his answer.



CHAPTER 6

The Curious Field On2

"The way into my parlour is up a winding stair,
And /  have many curious things to show when you are there."

Mary Howitt, "The Spider and the Fly"

The main idea of this Chapter is that we abolish the distinction between L 
and R (and so between +  and - ) ,  and explore the consequences of our 
genetic definitions of arithmetic operations in this more symmetrical context. 
What we get is in a sense the characteristic 2 analogue of the big Field No, 
which we might naturally call Nor  But it turns out that this new Field is 
also the “simplest” way of turning the Class On of all ordinal numbers into 
a Field, and so for a moment we shall explore it from this viewpoint and adopt 
the name On2 (which has in any case a nicer sound).

How shall we find the simplest addition and multiplication which make 
On a Field? (The reader who is happier with integers than with general
ordinals can restrict his attention to the non-negative integers 0, 1, 2,3 ,___ .)
We might do this as follows. We first fill in the addition-table, subject to the 
condition that before we fill in the entry for a +  /? we must have already 
filled in all entries or' +  /? and or 4- P  (or' <  or, p' < p). Then the entry at 
or +  /? is to be the least possible number which is consistent with the result’s 
being part of the addition-table of a Field. We then tackle the multiplication- 
table of a Field with the given addition. Again, the entries are to be the least 
possible ones subject to this requirement.

In this way we obtain the tables of Figs 2 and 3. We discuss the first few 
entries.

We have 0 +  0 =  0, since 0 is the least conceivable value, and there certainly 
is a field with an element satisfying x +  x  = x, namely any field, with x as 
the zero element But then this equation implies that 0 must be the zero 
element of our Field, and so we must have 0 +  or = or +  0 = a for all or.

50
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What about 1 +  1? The least conceivable answer is 0, for there exist 
fields of characteristic 2. So we must have 1 +  1 = 0 ,  and so a +  a. =  0 
for all a.

The next entry is 1 +  2.  This must be distinct from 0,1, and 2,  and so can 
and must be taken as 3. We then have l + 3  = l +  l +  2 = 2,  2  +  3 = 
2 +  1 + 2 = 1, and we know all sums ot +  f} with both a  and fi less than 4. 
We must have 4 +  0 = 4, 4 +  1 = 5 , 4 +  2 = 6,  and 4 + 3 =  7 since these 
numbers must all be distinct from 0, 1, 2,  3. Using these, we can fill in all 
sums a +  P with a and y less than 8, and then we must have 8 +  0 =  8, 
8 + 1 = 9 ,  . . . , 8  +  7 = 1 5 ,  yielding all sums of numbers less than 16, and 
so on. So the addition-table is, in part:

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F ig . 2. Nim-addition.

Readers familiar with the theory of the game of Nim will recognise this 
operation as the addition used in that game, so we refer to it as Nim-addition. 
The following is an easy rule enabling us to perform Nim-additions:

(i) The Nim-sum of a number of distinct 2-powers is their ordinary sum. 
Thus 8 +  4 +  1 is still 13.
(ii) The Nim-sum of two equal numbers is 0.

We use the term 2-power to mean a power of 2 in the ordinary sense, such as
1,2,4,8,16, (These are not powers of 2 with the new multiplication.)

Using this Nim-addition is easy, for example

13 +  7 =  (8 +  4 +  1) +  (4 +  2 +  1) = 8 + 2 =  10,
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since the 4’s and 2’s cancel The rule is of course the same as the usual rule 
“write the numbers down in binary and then add without carrying”, but we 
find that with that rule there are far too many opportunities to make mistakes 
while making the unnecessary translations.

We shall give a formal proof of the rule later.
With multiplication, we find that 0 .a can and so must be 0, so that 0 must 

be the zero of the Field. Then 1.1 can and so must be 1, so that 1 is the one, 
which results enable us to fill the first two rows and columns. We next 
observe that 2.2 cannot be 0,1, or 2, but can be 3, since in the finite field of 
order 4, the elements other than 0 and 1 satisfy x 2 —x + 1. Similar but more 
complicated considerations give Fig. 3 as the first part of the multiplication- 
table:

• 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 3 1 8 10 11 9 12 14 15 13 4 6 7 5
3 0 3 1 2 12 15 13 14 4 7 5 6 8 11 9 10
4 0 4 8 12 6 2 14 10 11 15 3 7 13 9 5 1
5 0 5 10 15 2 7 8 13 3 6 9 12 1 4 11 14
6 0 6 11 13 14 8 5 3 7 1 12 10 9 15 2 4
7 0 7 9 14 10 13 3 4 15 8 6 1 5 2 12 11
8 0 8 12 4 11 3 7 15 13 5 1 9 6 14 10 2
9 0 9 14 7 15 6 1 8 5 12 11 2 10 3 4 13

10 0 10 15 5 3 9 12 6 1 11 14 4 2 8 13 7
11 0 11 13 6 7 12 10 1 9 2 4 15 14 5 3 8
12 0 12 4 8 13 1 9 5 6 10 2 14 11 7 15 3
13 0 13 6 11 9 4 15 2 14 3 8 5 7 10 1 12
14 0 14 7 9 5 11 2 12 10 4 13 3 15 1 8 6
15 0 15 5 10 1 14 4 11 2 13 7 8 3 12 6 9

F i g . 3. Nim -m ultiplication.

The entries in the printed part of the table can all be found from those we 
have already established and the further entries 4 . 2  = 8, 4 .4  = 6, so we 
shall rapidly justify these. As for 4 .2 ,  this cannot be 0 ,1 ,2 , or 3, since we 
already know that these numbers form a subfield not containing 4. Similarly 
4 .2 cannot be one of 4, 5 ,6, or 7, since this would make 4 .3 one of 0,1 ,2 , or 
3. Since all later numbers are essentially equivalent, 4 .2  can and so must be 
taken as 8. Now 4 .4  cannot be one of 0,1,2,3 since these numbers are already 
squares in {0, 1, 2,3 ), and a number cannot have more than one square root 
in a field of characteristic 2  The equation 4 .4  = 4  would imply 4  = 1, and
4 .4  = 5 would imply 4 2 +  4  = 1, whereas the quadratic equation x 2 +  x  = 1 
has already its full complement erf roots (2 and 3) in the field {0,1,2,3}. So
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4.4  is at least 6, and since in fact the displayed multiplication-table does 
actually define a field of order 16, 4.4 can and must be 6.

[We could be rather less bold and simply assert that the equation x 2 = x +2 
is irreducible over {0, 1, 2,3} and so we could adjoin a solution of it to obtain 
a larger field. This solution can, and so may, be called 4.]

It can be shown that for finite numbers the Nim-multiplication table 
follows from the following rules, analogous to those for Nim-addition. We 
shall use the term Fermat 2-power to denote one of the numbers 2,4,16,256,
65536,..., that is to say, the numbers 22" in the ordinary sense.

(i) The Nim-product of a number of distinct Fermat 2-powers is their 
ordinary product. Thus 16.4.2 is still 128.
(ii) The square of a Fermat 2-power is its sesquimultiple.

The sesquimultiple of a number is the number obtained by multiplying it
by 1  ̂in the ordinary sense. So 22 = 3, 42 =  6, 162 =  24,___

To work out the products of other numbers we use the associative and 
distributive laws. For example

5.9 = (4 +  1)(4.2 +  1) =  42.2 +  4.2 +  4 +  1 = 6.2 +  8 +  4 + 1

=  (4 +  2).2 +  13 = 4.2 +  22 +  13 = 8 +  3 +  13 = 6.

Our two rules for addition and multiplication imply and are implied by 
the following rules, which are remarkably similar to each other:

(a) If x is a 2-power, and y < x, then x +  y has its normal value, but 
x +  x = 0.
(b) If x is a Fermat 2-power, and y < x, then xy  has its normal value, but 
x . x is the ordinary value of 3x/2.

The rule we have given for addition generalises to infinite ordinal numbers 
in a fairly obvious way, but that for multiplication does not, and we obtain 
many remarkable results, for instance the theorem that the least infinite 
ordinal co is a cube root of 2 !

THE INDUCTIVE DEFINITIONS

The definition of the operations in the above discussion is not very easy 
to work with, for we must prove a theorem every time we want to fill in an 
entry. In any case, it is not at all obvious that the definition is in any sense 
consistent, in the sense that it really does define a Field. It is remarkable that 
precisely the same effect is achieved by making just two 1-line definitions:

a +  fi is the least ordinal distinct from all numbers a' +  jS, a +  f}'
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[ — a. is the least ordinal distinct from all numbers — of]
a/? is the least ordinal distinct from all numbers a!ft + a/?' — a'p'.

In each case, o' and ^  represent arbitrary ordinals smaller than a and P 
respectively. We say two 1-line definitions because in fact - a  = a for all ot, 
so that we could replace the -  sign by a +  sign in the product definition and 
eliminate the middle line. But we prefer to use — signs where they seem more 
natural than +  signs.

In the formal development which follows, we shall use only these definitions. 
It will turn out that they do in fact make the Class On of ordinal numbers 
into a Field On2 with many curious properties. We hope the analogy with 
the definitions of the operations in No will not have escaped the reader. 
[Least really means simplest.']

We shall write mex(S) (minimal excluded number) for the least ordinal 
not in the set S, and refer to the members of S as excludents. If a = mex(S), 
we shall often use a* for a variable ranging over S—thus a* may take all 
values less than a, and possibly some values greater than a, but not a itself. 
We continue to use of for a variable which takes all values less than a.

PROPERTIES OF ADDITION

T h e o r e m . 36. We have o( +  /? =  ot +  y i f f / ?  =  y . Also, 

a + P = mex {a* +  /?, a +  /?•}.

Proof. If, say, p > y, then a +  y is an excludent for a +  /?. The second
sentence follows, for certainly all numbers of +  /J, ot +  p1 are excludents, and
the other excludents are distinct from ot +  p.

Theorem. 37. For all ordinals a, fS, y we have 

ot +  0 =  a, a + p -  P + a, {tx + P) + y = a + (P + y),

a +  ot =  0, —a = a.
Proof. These have 1-line proofs:

a +  0 =  mex {of +  0, a +  O'} =  mex {a'} =  a 

a + p = mex{of +  P, a +  p'} =  mex{/f + a', P' + <x} = P + a 

(a +  p) + y =  mex{(ot +  p)* + y, (a + P) + y'}

= mex {(of +  p) +  y, (a + P’) +  y,(ot + P) + y'}

= mex {of +  (P + y), a +  (/?' +  y), a +  (p +  y^}

=  . . .  =  a +  (P -F y).



a +  a =  mex{a' +  a, a +  a'} =  mex{0*} =  0 

— a = mex{ —o'} =  mex{a'} =  a.

(Note the occasional occurrences of *.)

Summary. On2 forms an Abelian Group with 0 for zero and — a  = a.

PROPERTIES OF MULTIPLICATION

T heorem  38. For all ordinals a, /3, y we have

aO = 0, al = a, a/3 =  P<x, (a +  0)y = ay + fly, (a P)y = a(/3y).

Proof. These also have 1-line proofs: 

aO =  mex {} =  0

a l  = mex{a'l +  aO — a'0} = mex {a'} = a 

a/? = mex{a'/S +  a/S' -  a'/?'} =  mex{/?'a +  P<x' -  /?'a'} = pa 

(a +  P)y = mex {(a +  /?)*y +  (a +  /?// -  (a +  /?)*'/}

= mex {(a' + /?)y + (a + fly' -  (a' + fly\
(a +  pTtt +  (a +  P)i -  (a +  p')y'}

= mex{(a'y +  ay' -  a'y') +  Py, ay + (P'y +  Py' -  /S'y')}

= mex {(ay)* +  Py, Py + (Py)*} = ay +  Py.

(afly = mex{(a/?)*y +  (txP)y' -  (aP)*y'}

= mex{(a'/J + ap' -  a!p')y + (afly' -  (a'p + a/?' -  «'/?>'}
= mex{a'/fy + a/J'y + a/3y' -  a.'P'y -  a'/Jy' — ap'y' +  a.'P'y'}

=  . . .  =  a(/3y).

In the last two of these we have to use the assertion that 

aP = mex {a*/? +  aP* -  a*/?*},

which amounts to the assertion that from a ^  a* ,/? # /!*  we can deduce 
a/3 +  ot*P #  a*P + a/3*. But in view of the symmetry of this inequality we 
can suppose a > a*, P > /S*, and the inequality is then immediate from the 
definition of a p.

Summary. On2 is a commutative Ring with 1 as one.
In fact On2 is a Field, for we can use the analogue of our genetic construction 

of inverses in No to construct inverses in On2. In fact if we define 1/a induct-
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ively by the formula

P =  -  =  m ex
a

o , i ± s ^ m

then we can mimic the proof of Chapter 1 to show that ap = 1. A similar 
construction shows that every number in On2 has a square root—this time 
we use the inductive definition

in which ff  and P* denote options of P not both equal, which mimics Bach’s 
definition for No (Chapter 1).

We shall not elaborate on these suggestions here, since in a moment we 
shall show that in fact On2 is an algebraically closed Field by a method which 
makes no use of these particular constructions, and enables us to locate the 
ordinals 1/a, ̂ /a, etc., very much more easily. The results we shall prove show 
that each new number extends the set of previous ones in the simplest 
possible way, regarding addition as simpler than multiplication and division, 
and these as simpler than algebraic extensions which are in turn simpler 
than transcendental ones.

This will give us in particular a very clear picture of the field formed by the 
finite numbers. Thus {0,1} is the field f 2 of order 2, and since this is closed 
under simpler operations the number 2 will define an algebraic extension, 
and in fact we have 22 =  2 +  1 =  3, and the numbers 0,1,2,3 form the field 
F4 of order 4 which is extended by the number 4 (satisfying 42 = 4 +  2 =  6) 
to the Field F16 of order 16, and so on.

In stating our results, we follow von Neumann’s convention of identifying 
each ordinal number with the set of all previous ones. So when we say, for 
instance, that 4 is a field, we mean that the set {0,1,2,3} is a field.

We shall frequently need to use the ordinary ordinal notions of sum, 
product, and power of ordinals. The ordinal sum and product are not quite 
the same as the maximal sum and product as used in previous chapters, 
but the distinction will seldom matter. We shall use [square brackets] for 
the ordinal operations—thus [ 4  +  4 ]  = 8, [ 4 . 4 ]  = 16, [ 4 4 ]  = 256, whereas 
4  + 4  = 0, 4 . 4  = 6, 4 4 = 4 . 4 . 4 . 4  = 5.

We shall use A as a name for some ordinal whose arithmetic relation to 
earlier ordinals is currently being considered, and S for the typical member 
of A (i.e., ordinal less than A).

THE SIMPLEST EXTENSION THEOREMS
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T h e o r e m  3 9 . I f  A  is not a group (under addition), then A  = a +  /3, where 
(a, fi) is any lexicographically earliest pair o f numbers in A whose sum is not 
in A.

Proof. Plainly a +  /3 ^  A. But the excludents a' +  /?, a +  /?' for a +  /3
are all in A, so a +  /? <  A.

T h e o r e m  4 0 . / /  A is a group, we have [Aa] 4-/3 = [Aa +  /3] /or all a, 
and a// /? e A.

Proof. The excludents are [Aa' +  5] +  /S and [Aa] +  /?'. But since A is a 
group we can solve the equation 5 + /? = 8 for any given 5 e A, and so by 
induction the excludents are

[Aa'] + 6 + P = [Aa'] + 5 =  [Aa' 4- 5] and [Aa +  j?']

which are precisely the numbers less than [Aa + /?].

T h e o r e m  41. I f  & is a group but not a ring, then A = a/3, where (a, /3) is 
any lexicographically earliest pair o f numbers in A whose product is not in A.

Proof. Plainly a/? >  A. But the excludents a /  +  a/?' — a / '  for a/3 are all 
in A, so a/3 <  A.

T h e o r e m  42. I f  A  is a ring, and T  ^  A  is an additive subgroup all of whose 
non-zero elements have multiplicative inverses in A, then A y =  [Ay] /o r a/1 
yeT.

Proof. The excludents for Ay are Ay' +  S(y — y'). Since y — y' is invertible 
in A, we can make <5(y -  y') be any number 5 in A by choice of 5, so the typical 
excludent becomes

Ay' +  $ =  [Ay' +  5] 

which is the typical number less than [Ay],

T h e o r e m  4 3 . I f  A  is a ring but not a field, then A  is the inverse of the earliest 
non-zero a in A  which has no inverse in A.

Proof. Let T be the largest ordinal < a  which is a group. Then the typical 
excludent for AT is Ay +  «5(T -  y) (<5 e A, y e T)- Write a =  T — p.

Then for all y <  /?, T — y is invertible in A, so that we can write <5(r — y) =  5, 
an arbitrary ordinal in A. This shows that all the numbers [A/3' +  5] less 
than A/3 are excludents for AT. The number A/3 = [A/S] is also an excludent 
(take y =  /S, and S =  0). But A/3 +  1 =  [A/3 +  1] is not an excludent, for 
we should need to take y = p,8(F -  fi) = 1, i.e. Sot =  1.



So we have AT = Afi + I, and so Aot =  A(T — /?) =  1.

T heorem  44. With assumptions as in Theorem 43 and its proof, we have

A \  +  A*" V ,- i  +  . . .  +  Ayt +  <5 =  [A (P, - 1yll +  . . .  +  y t ) +  <5]

for all nett), and all y0, yv . . . , y„ e T, S e A.
See note on p 63.

Proof. It will suffice to prove that A"+1 = [AT"]. Now the typical exclu- 
dent for A"+1 has the form

A*0o + ••• + 4.) ~ A -H V i ± 8^.. .SH,
where the 6, are independent variables ranging over A  Each of the coefficients 
in this polynomial is in A, and is either of form y or T +  y for some y e T. 
Using the equation AT =  A/? +  1 we can therefore reduce the polynomial 
to the form

A"y„ +  • • • +  Ay, +  S0,

where the yt and S are restricted as in the theorem. From the inductive hypo
thesis, we deduce that this number is less than [AT"], so that A*+1 <  [AT*]. 
The opposite inequality is immediate from the inductive hypothesis.

T heo rem  45. I f  A  is a field but not algebraically closed, then A  is a root 
o f the lexicographically earliest polynomial having no root in A. [In the 
lexicographic order, we examine high degree coefficients first.]

Proof. The typical excludent for A" is

A"- *($! +  A " '2(8ld2 +  ±  6t62 . . .8 K,

the 5, ranging freely over A.
Now if all polynomials earlier than

- A "  +  A N~ltxlf. i -  . . .  ±  «0

have roots in A, they will all split completely into linear factors in A, and so 
we can choose n and the 5, to show that A cannot be a root of any such 
polynomial. But if the displayed polynomial itself has no root, then every 
number less than

A*-1* * -, -  . . .  ±  «0 =  [ A " ' 1̂ - !  - • • • ± « 0]
appears as an excludent for A", but this number does not, and so we have 
indeed

A* = A " '1* * .,  -  . . .  ±  a0.

Note that we have also proved:
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T heorem  46. With the same assumptions as in Theorem 45 and its proof, 
we have

A-5b +  . . .  +  50 = [A-<5b + . . .  +  <50]

for all n < N  and all 50, . . . ,  8n in A.

So it remains only to prove

T h eo rem  47. I f  A  is an algebraically closed field, then A  is transcendental 
over A. and we have

A *5n + . . .  + S0 = [A*^ +  ..• +  $„] 

for all neco, and all S0, . . . , S n in A.

Proof. Any number outside an algebraically closed subfield of a larger 
Field must be transcendental over that subfield! The second part of the 
theorem is proved as in the previous theorems.

Summary. Each ordinal A extends the set of all previous ordinals in the 
simplest possible way, where we regard sums, products, inverses, algebraic 
extensions, and transcendental extensions as successively more complicated 
concepts.

We now turn back to the problem of identifying the first few ordinals in 
their role as members of On2.

ORDINALS BELOW THE FIRST TRANSCENDENTAL

(Some of the discussion will apply also to later ordinals.)
It is easy to see that if A is any group, then the next group is [A . 2], Hence:

T heo rem  48. The ordinals that are groups are precisely the 2 -p o w ers  [2*]. 
Each ordinal can be written uniquely as a finite sum of descending 2-powers, 
and it is the same sum in both senses.

Proof. It follows from well-known theorems about ordinals that each 
ordinal has a unique expression [2*° + 2*' + . . .  + 2*"'1], where n is finite 
anda0 >  a, > . . .  >  a „ _ T h a t  this is the same as [2*°] +  . . .  +  [2“"*'] then 
follows from Theorem 40.

This justifies the normal rule for finding Nim-sums.
Now the ordinals below the first transcendental are algebraic over previous 

ones, and so by induction algebraic over the field 2 whose only elements are 
0 and 1. It follows that any finite number of such ordinals generate a finite 
field. Each of these ordinals A which is itself a field defines an algebraic 
extension of itself. Since these extensions are taken in order of degree where
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possible, the first extensions will be quadratic, and then when the field is 
quadratically closed we shall take cubic extensions, then quintic ones, etc. 
[Since the Galois group of every finite field is abelian, the quadratically 
closed field remains quadratically closed after taking cubic extensions, etc.]

Moreover, the quadratic extensions will all be by equations of the form 
x 2 + x  = a, since the only lexicographically earlier quadratics are x 2 =  a, 
and every element of a finite field of characteristic 2 already has a square root 
in that field. The cubic extensions will be by cube roots, however, since the 
equation x3 =  ax2 + fix + y defines an extension of the field generated 
by ot, /?, y to a larger finite field, and any finite field extension of degree 3 
(and characteristic 2) can be made by a cube root, corresponding to a lexi
cographically earlier equation. Similar comments apply to the later extensions 
by fifth roots, seventh roots, etc.

T h eo rem  49. The finite numbers that are fields are the Fermat 2-powers
2,4 ,16,256,..., each the [square] o f the previous one. These numbers satisfy 
the equations

22 =  3,42 =  6, 162 = 2 4 ,..., [22"]2 = [ | . 2 2"“ ].

The next numbers that are fields are co, [co3], [co9] , . . . ,  and in the sequence

2, co, [co3] ,  [co9] , . . .  

each term is the cube of its s u c c e s so r^ )  Then in the sequence 

4 , [co“ ] ,  [co*5] ,  [co®25] , . . .  

each term is the fifth power of its successor, and in

co +  1, [co®*], [co®1-7], [co*1-49] , . . .

each term is the seventh power o f its successor. In general, if p is the (k + l)st 
odd prime, each term in the sequence

^ [ c o n ^ n ^ n - .
is the p'th power of its successor, ap being the least number in [co®*] with no 
p'th root in [co®*].

Proof. We discuss the finite number case first. It will suffice to show how 
the statements about 256 are deduced from those about 16. We suppose 
inductively that 16 is a field, and that as x varies in 16, x2 +  x takes precisely 
the values 0 , 1 , . . . .  7 in 8. Note that when we replace x by x +  1, the function 
x2 +  x is unaltered.

Then the first irreducible equation over 16 is x2 +  x =  8, and so we have 
162 +  16 = 8, whence 162 = 24. Now we know that 256 is a field, with typical
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element X  =  16x +  y. We examine the function

X 2 + X  = \62xz +  y2 +  16x + y  = 16(x2 +  x) +  (8x2 +  y2 +  y).

In this, x2 +  x can take any value in 8, and since when we change x by 1 the 
expression 8x2 +  y2 +  y changes by 8, this expression can be made to take 
any value in 16 without affecting the value of x2 +  x. This shows that the 
values of X 2 +  X  are precisely the numbers 16.8' +  16' in 128, which com
pletes our inductive step.

Since co is now known to be the quadratic closure of 2, co must be the 
cube root of the smallest finite number with no finite cube root, which is 2, 
since any cube root of 2 has order 9, and 9 divides no number of the form 
[22" — 1], This statement, and the remarks before the statement of our 
theorem, justify the assertions about [co3"]. It is remarkable that each of these 
numbers is the [cube] of its predecessor, but the cube of its successor!

The numbers 2 and 3 have order 3 and so have fifth roots in co, but 4 has 
order 15 (by direct calculation) and so does not, for since 25 divides no number 
of the form [22" -  1] there can be no finite number of order 25. The assertions 
about [co“ ■ s“] follow, and in a similar way we have the more general asser
tions about [co“* •*’"]. We shall calculate a7. The number 2 has [order 3 
modulo 7], and 3 divides no [power of 2], so that no finite field of order 
[22"] can contain an element of order 7. It follows that every finite number 
has a finite seventh root, whence a7 >  co. But the number co lies in a cubic 
extension of the field 4, and so generates a field of order exactly 64. The multi
plicative group of this is cyclic of order 63, and since co has order 9, it must be a 
7th power in this field. But in fact the only numbers that are 7th powers in 
the field are the powers of co. which we find by direct calculation to be

1 ,co,co2,co3 =  2, co4 =  co .2, cos =  co2 .2 , co6 =  3, co7 =  co.3,

and co8 = co2.3. Since co +  1 is not among these, it is not a seventh power in 
the field generated by co and the finite numbers, and so not in any extension 
obtained by adjoining cube and fifth roots. So indeed a7 =  co +  1.

Hendrik Lenstra has computed a p for p < 43.
Observe that the theorem enables us to compute with numbers below [(#““], 

using the expansion

Q'’- ' (*,_,+ ... + Qa^ + a 0 = , + ... + f ta ,  + a 0]

for£2 = (co"*p"], aj,,..., (*,.,<£2, which follows from Theorem 46.
The theorem also tells us that [toO is the algebraic closure of 2, and so is the first 

transcendental. Polynomials in [coO with coefficients less than [ooO are therefore 
evaluated [normally], so that the next number which is a ring is [«/"“ “] = [0)““*'].

But this ring is not a field, since [©"“] is not invertible in [oo““ +l], and so
[a)""+l] is the inverse of [to""]. In fact we do not see another field until
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we get to
[co“" ]  = Q, say.

For let t =  [co0’"], and a, /?, y, . . .  denote various ordinals less than t. Then 
since

[t°a+  t*~lp +  . . .+  fy +  <5] = r"a +  t*" *0 +  . . .  +  ty + S 

we must have
[ r ]  = 1/t,

and then we find

[r°»+"a +  . . .  +  tmf}+ f 'y  +  . . .  + <5] =  + . . . +  y +  ytm + . . .+  S

showing that

t - 1

Continuing, we find more generally that

1f  to+rna + » 1  _
'] = ( r - « r +l

and that rational functions of t arise in lexicographic order of their partial 
fraction expansions

It« w ] = s _ A _ _ +  Yyjri.

The limit of these numbers, namely
[,»+«,] =  jy-j _  [jyi] _  Q

must be the first algebraic extension Q =  J t ,  followed by [f22] = i/t,
.....

At x =  [0 “] we have a perfect field, and will not need to adjoin more 
square roots before the next transcendental equation. In fact x satisfies

x2 +  x =  t

and we must solve many such equations before the first cubic extension ^/f, 
which probably happens at the next e-number

Since this extension produces new quadratics to be solved, even the next 
cubic extension %/t — 1 will take some time in coming.
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Let us use, as sometimes customary, for the ath solution of a = [co*] 
(counting from a = 0), then for the ath solution of a =  ea, t)a for the ath 
solution of a =  Ca, and so on through the (transfinite) Greek Alphabet. We 
shall use the symbol [a] to denote the ath letter of this Alphabet. Then we 
can state:

THE PROBLEM OF THE NEXT TRANSCENDENTAL

Describe in terms of ordinal arithmetic the least ordinal greater than 
[co""] which is transcendental over previous ordinals. In particular, decide 
where this number lies in relation to the numbers: (a) the ordinal [a>]0.
(b) the least a with |aj0 = a.

Note added in second printing 
H. W. Lenstrahas pointed out that the proof of Theorem 44 is incomplete. 

It really requires the fact that T is a field, which only becomes apparent later. 
In fact T is an algebraically closed field. I am also indebted to Professor 
Lenstra for pointing out some errors in the original version of p. 62.



Appendix to Part Zero
This is Liberty-hall, gentlemen!

Oliver Goldsmith, ",She Stoops to Conquer"

In this appendix we informally discuss the formalisation of our theory, 
with particular regard to the nature of the inductions involved.

In Chapter 3 we gave a formal definition of the birthday of an arbitrary 
number, and we suspect that many readers would have felt happier had we 
described all our inductive arguments in terms of birthdays. The typical 
induction would then read:

“If P(y) holds for all y with birthdays less than the birthday of x, then P(x) 
holds. So by induction, P(x) holds for all x.”

The feeling that this sort of treatment adds to the precision of an inductive 
argument is much too common, and is responsible for the introduction of 
many irrelevancies in the literature. Thus in the case under discussion the 
notion of birthday is completely irrelevant, and all that is needed to justify 
the induction is the principle:

“If P is some proposition that holds for x whenever it holds for all x1 and 
x*, then P holds universally.”

We have already remarked that this was what we intended to be under
stood from the last sentence of our construction: “All numbers are con
structed in this way.”

The general inductive principle above has for its counterpart in the 
Zermelo-Fraenkel set theory ZF the so-called axiom of restriction, or 
foundation, which can be stated in the form:

“If P is some proposition that holds of a set x whenever it holds for all 
members of x, then P holds for every set.”

Perhaps part of the prejudice against inductive arguments with arbitrary 
inductive variable is that this axiom is usually only stated in the peculiarly 
opaque form:

“Any non-empty Class X  has some member disjoint from X ."

64
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It is then proved equivalent to the assertion that every set belongs to some 
set Pa, where these are the sets obtained by transfinite iteration of the power- 
set construction (Pa being the union of the power-sets of all Pfi (/? <  a)), but 
not to the more general inductive principle stated above. To see the latter 
equivalence, we need only take X  as the Class of all x for which P fails.

The mention of ZF prompts a discussion of the problems of formalising 
our theory within ZF. Some people sense difficulties associated with the fact 
that an equality class of numbers is naturally a proper Class, rather than a 
set, and so cannot serve as an element in some other class. A slightly greater 
knowledge of ZF shows that this is no obstacle, and the theory may be 
formalised along the following lines.

We define a game as an ordered pair <L, R> of sets whose elements are 
themselves games of lower rank. (The rank of a set is the least a for which that 
set belongs to Pa.) Then we introduce the relation <  on games by

x  <  x' iff (no member of L is ^  x', and x ^  no member of R'),

where x =  <L, R>, and x' = <L, R'>. The equivalence relation =  is then 
introduced by x =  y if and only if x <  y and y <  x, and prenumbers are 
then defined inductively by the requirement that every member of L u  R 
should be a prenumber, and no member of L ^  any member of R.

The fact that the equivalence classes of =  may be proper Classes is then 
overcome by the standard dodge—for any x we define [x] to be the set of all y 
of the least possible rank that are equivalent to x. Any set of the form [x] for 
some prenumber x is then called a number.

So a number becomes a rather curiously restricted set of ordered pairs 
<L, R), each of which is of course a set according to the Kuratowski defini
tion <L,R> =  {{L}, {L, R}}.

Another, and technically simpler, approach makes use of the sign-expan
sions introduced in Chapter 3. We define a number to be its sign-expansion, 
which is of course a function from some ordinal a to the set { + , —}. We 
then define order-relations in terms of these expansions by the rules in 
Chapter 3, and define {L | R} to be the simplest (i.e. shortest) number greater 
than every member of L and less than every member of R. We then define the 
arithmetic operations by the formulae in Chapter 0.

In this simpler formalisation, a number is still a pretty complicated thing, 
namely a certain function in ZF, which is of course a certain set of Kuratow- 
skian ordered pairs. The first members of these ordered pairs will be ordinals 
in the sense of von Neumann, and the second members chosen from the 
particular two-element set we take to represent { + , —}.

The curiously complicated nature of these constructions tells us more about 
the nature of formalisations within ZF than about our system of numbers, 
and it is partly for this reason that we did not present any such formalised
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theory in this book. But the main reason was that we regard it as almost self- 
evident that our theory is as consistent as ZF, and that formalisation in ZF 
destroys a lot of its symmetry. Plainly the proper set theory in which to 
perform a formalisation would be one with two kinds of membership, 
and would in fact be very like the abstract theory of games that underlies 
the next part of this book.

It seems to us, however, that mathematics has now reached the stage where 
formalisation within some particular axiomatic set theory is irrelevant, 
even for foundational studies. It should be possible to specify conditions on a 
mathematical theory which would suffice for embeddability within ZF 
(supplemented by additional axioms of infinity if necessary), but which do 
not otherwise restrict the possible constructions in that theory. Of course the 
conditions would apply to ZF itself, and to other possible theories that have 
been proposed as suitable foundations for mathematics (certain theories of 
categories, etc.), but would not restrict us to any particular theory. This 
appendix is in fact a cry for a Mathematicians’ Liberation Movement!

Among the permissible kinds of construction we should have:

(i) Objects may be created from earlier objects in any reasonably con
structive fashion.
(ii) Equality among the created objects can be any desired equivalence
relation.

In particular, set theory would be such a theory, sets being constructed 
from earlier ones by processes corresponding to the usual axioms, and the 
equality relation being that of having the same members. But we could 
also, for instance, freely create a new object (x, y) and call it the ordered pair 
of x and y. We could also create an ordered pair [x, y] different from (x, y) 
but co-existing with it, and neither of these need have any relation to the set 
{{x}, {x, y}}. If instead we wanted to make (x, y) into an unordered pair, we 
could define equality by means of the equivalence relation (x, y) =  (z, f) 
if and only if x  — z, y = t or x  = t, y = z.

I hope it is clear that this proposed is not erf any particular theory as an 
alternative to ZF (such as a theory of categories, or of the numbers or games 
considered in this book). What is proposed is instead that we give ourselves 
the freedom to create arbitrary mathematical theories of these kinds, but 
prove a metatheorem which ensures once and for all that any such theory 
could be formalised in terms of any of the standard foundational theories.

The situation is analogous to the theory of vector spaces. Once upon a time 
these were collections of n-tuples of numbers, and the interesting theorems 
were those that remained invariant under linear transformations of these 
numbers. Now even the initial definitions are invariant, and vector spaces 
are defined by axioms rather than as particular objects. However, it is
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proved that every vector space has a base, so that the new theory is much the 
same as the old. But now no particular base is distinguished, and usually 
arguments which use particular bases are cumbrous and inelegant compared 
to arguments directly in terms of the axioms.

We believe that mathematics itself can be founded in an invariant way, 
which would be equivalent to, but would not involve, formalisation within 
some theory like ZF. No particular axiomatic theory like ZF would be needed, 
and indeed attempts to force arbitrary theories into a single formal strait- 
jacket will probably continue to produce unnecessarily cumbrous and 
inelegant contortions.

For those who doubt the possibility of such a programme, it might be 
worthwhile to note that certainly principles (i) and (ii) of our Mathematicians’ 
Lib movement can be expressed directly in terms of the predicate calculus 
without any mention of sets (for instance), and it can be shown that any theory 
satisfying the corresponding restrictions can be formalised in ZF together 
with sufficiently many axioms of infinity.

Finally, we note that we have adopted the modern habit of identifying 
ZF (which properly has only sets) with the equiconsistent theory NBG 
(which has proper Classes as well) in this appendix and elsewhere. The 
classification of objects as Big and small is not peculiar to this theory, but 
appears in many foundational theories, and also in our formalised versions 
of principles (i) and (ii).
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FIRST PART 

. . . AND GAMES

But leave the Wise to wrangle, and with me 
The Quarrel o f the Universe let be :
And, in some corner o f the Hubbub coucht,
Make Game of that which makes as much o f Thee

The Rubaiyat of Omar Khayyam
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CHAPTER 7

Playing Several Games at Once
For when the One Great Scorer comes 

to write against your name.
He marks—not that you won or lost— 

but how you played the game.
Grantland Rice,

Alumnus Football
The games we shall consider are in spirit closer to Chess than to Football. 

We imagine them played, on some kind of board perhaps, between two players 
whose usual names are Left and Right. [Aliases (respectively) Black and 
White, Vertical and Horizontal, Arthur and Bertha.] Our own sympathies 
are usually with Left.

The games these people play have positions, and in any position P, there 
are rules which restrict Left to move to any one of certain positions (typically 
PL) called the Left options of P, while Right may similarly move only to 
certain positions (typically P*) called the Right options of P. Since we are 
interested only in the abstract structure of games, we can regard any position 
P as being completely determined by its Left and Right options, and so we 
shall write P — {P1 1 P*}.

Thus if in some game there is a position P from which Left may move to 
any one of certain positions A, B, C (only), while Right may move only to the 
position D, then we write P =  {A, B, C j D}.

A game obviously ends when the player who is called upon to move finds 
himself unable to do so. So for instance the position { | U, V, W, X}, with 
Left about to move, obviously corresponds to an ended game. Except in 
Chapters 12 and 14, we adopt the normal play convention, according to which 
a player who is unable to move when called upon to do so is the loser. This is 
obviously a natural convention, for since we normally consider ourselves as 
losing when we cannot find any good move, we should obviously lose when 
we cannot find any move at all!

Our players Left and Right are usually unwilling to play games that are 
capable of going on forever (they are both busy men, with heavy political

71
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responsibilities). So except for a moment in Chapter 11, we adopt the con
vention that in no game is there an infinite sequence of positions each of 
which is an option of its predecessor. [Including in particular the case when 
these options are alternately Left and Right.]

Each game G has its own proper starting position, the position from which 
we usually start to play. But for any position P of G we can obviously obtain 
a shortened game by starting instead at P. We find it handy to identify this 
game with P, so that in particular every game G will automatically be identi
fied with its starting position.

It follows from these conventions that games can be represented by trees, 
the positions being represented by nodes (the initial position being the lowest 
node, or root\ and the legal moves by branches. We shall always draw these 
trees so that the moves for Left are represented by leftwards slanting branches, 
and those for Right by rightwards slanting ones.

In Fig. 4 'we draw these trees for the four simplest games (bom on days 
0 and 1),

The simplest game of all is the Endgame, 0. I courteously offer you the 
first move in this game, and call upon you to make i t  You lose, of course, 
because 0 is defined as the game in which it is never legal to make a move.

In the game 1 =  {01}, there is a legal move for Left, which ends the game, 
but at no time is there any legal move for Right If I play Left and you Right, 
and you have first move again (only fair, as you lost the previous game) 
you will lose again, being unable to move even from the initial position. 
To demonstrate my skill, I shall now start from the same position, make my 
legal move to 0, and call upon you to make yours.

Of course you are now beginning to suspect that Left always wins, so for 
our next game, -1 , you may play as Left and I as Right! For the last of 
our examples, the new game * = {0 10}, you may play whichever role you 
wish, provided that for this privilege you allow me to play first 

We summarise your probable conclusions:

In the game 0, there is a winning strategy for the second player 
In the game 1, there is a winning strategy for Left (whoever starts)
In the game -1 ,  there is a winning strategy for Right; and, finally.
In the game *, there is a winning strategy for the first player to move.

EXAMPLES OF SIMPLE GAMES

o == {|} 1 = {0|} - i  = {|o} * = {o 10}
Fic. 4. The simplest games.
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In general, we introduce corresponding notations:

G > 0 (G is positive) if there is a winning strategy for Left 
G <  0 (G is negative) if there is a winning strategy for Right 
G = 0 (G is zero) if there is a winning strategy for the second player,
G || 0  (G is fuzzy) if there is one for the first player.

We shall also combine these symbols:

G ^  0 means G > 0 o r G  = 0 ; G < 0  means G < 0 or G =  0;
> G l> 0 means G >  0 or G || 0; G <li 0 means G <  0 or G || 0.

Thus G >  0 means that supposing Right starts, there is a winning strategy 
for Left, while G i> 0 means that there is a winning strategy for Left if Left 
starts. In slightly less formal terms, justified by Theorem 50, we can say that 
G >  0 if there is no winning first move for Right (the start of a winning 
strategy for him), while G i> 0 means that there is a winning first move for 
Left.

T h eo rem  50. Each game G belongs to one of the outcome classes above.

Proof. This is equivalent to the assertion that for each game G, we have 
either G >  0 or G <n 0, and either G ^  0 or G n> 0. Suppose that this is 
true of all GL, G*. Then if any GL >  0, Left can win by first moving to this 
Gl , and then following with his strategy for this GL, Right starting. If not, we 
have each GL <1 0, and Right has a winning strategy in G, Left starting. 
He just sits back and waits until Left has moved to some GL, and then applies 
his winning strategy (Right starting) in that GL.

THE NEGATIVE OF A GAME

Since the legal moves for the two players are not necessarily the same, we 
may obtain a distinct game by reversing the roles of Left and Right through
out G. The game so obtained we call the negative of G. Inductively, it is the 
game — G defined by the equation

- G  = { - G * |  - G l }.
Obviously, negation interchanges positive and negative games, while the 
negative of a zero or fuzzy game is another game of the same type.

SIMULTANEOUS DISPLAYS. SUMS OF GAMES

Left and Right are given to playing simultaneous displays of games against 
each other, in the following manner. Each game is placed on a table, and
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when it is Left’s turn to move, he selects one of the component games, and 
makes any move legal for Left in that game. Then Right selects some com
ponent game (possibly the same as that used by Left, possibly not), and makes 
a move legal for Right in that game. The game continues in this way until 
some player is unable to move in any of the components, when of course 
that player loses, according to the normal play convention.

When games G and H  are played as a simultaneous display in this manner, 
we refer to the compound game as the disjunctive sum G + H  of the two games. 
Most of the rest of this book is concerned with such disjunctive sums— 
which we therefore simply call sums—but in Chapter 14 we shall consider 
some other kinds of simultaneous display, which will lead to other operations 
on games.

HOW SUMS HAPPEN—A GAME WITH DOMINOES

In fact it often happens in some real-life game that a position breaks up 
into a disjunctive sum, because it is obvious for some reason that moves 
made in one part of the position will not affect the other parts. Consider for 
example the following game with dominoes, suggested by Goran Andersson.

On a rectangular board ruled into squares, the players alternately place 
dominoes which cover two adjacent squares, Left being required to place 
his dominoes vertically, Right horizontally. The dominoes must not overlap, 
and the last player able to move is the winner.

After a time, the vacant spaces left on the board are usually in several 
separated regions, and the game becomes a sum of smaller games one for 
each region. We analyse the simplest possibilities.

A region Q  contains no move for either player, and so is abstractly the 
game { | } =  0. Such regions can be neglected.

A region 0  or has just one move for Left (to OX but none for Right.

Its value is therefore JO | } == 1, and indeed it confers an advantage of just one 
move upon Left Similarly the region M i l l  is —2, since it has no move 
for Left, but moves for Right to 0 and - 1 ,  and we recall { 10, — 1} = — 2.

In general, if a position has no move for Right at any time, and at most n 
successive moves for Left, its value is n, and the value will be —n if we reverse 
the roles of Left and Right here.

The region is more interesting. Left has one (stupid) move to

I I 1 = - 1 and another (more sensible) move to Q  + Q  = 0, whereas 
Right has only one move to Q  = 1. So the value should be {0, — 1 | 1}, which
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the diligent reader of the zeroth part of this book will recognise as And there 
is indeed a definite sense in which this region represents an advantage of 
exactly one half of a move to Left!

Values other than numbers can occur in this domino game. The region
, has value {0 10} =  *, since either player can move to [ M  0 (only),

while the region has value {1 | -1 }  since Left moves to Q  = 1, and 

Right by symmetry to — 1.

• 0  - M i l l  (only) has the' The dominoes position with regions

value j  + 1 — 2 =  — Since this is negative, Right is half-a-move ahead, 
and can win the game, no matter who starts.

SUMS OF SIMPLE GAMES

Since it is never legal to move in 0, the game G + 0 is essentially the same 
as G, and we write G +  0 = G.

The game 1 +  1. From the sum 1 +  !, Left can move to 1 +  0 or 0 +  1, 
both essentially the same as 1. Since Right can never move, we have 
1 +  1 =  {1,11}, and since Left’s two moves are essentially the same, we 
can simplify this further to 1 +  1 =  {11}. This game we call 2  It is a positive 
game, since Left has moves but Right has not.

The game 1 -  1. We write 1 — 1 for the sum 1 +  ( - 1). In this, Left can 
only move to 0 H—  1 = — 1 (which is a win for Right), and Right can only 
move to 1 +  0, a win for Left So neither player will really want to move, and 
the game is a zero game. In symbols, we have 1 — 1 = {— 1 1 1} = 0.

The game * +  *. In a similar way, * +  * = {» | *}, which, since * is a win 
for the first player, is a second player win. So we have * +  * =  0.

What do these equalities mean?
There is a famous story of the little girl who played a kind of simultaneous 

display against two Chess Grandmasters (surely a Big concept!). How was it 
that she managed to win one of the games? Anne-Louise played Black against 
Spassky, White against Fischer. Spassky moved first, and Anne-Louise just 
copied his move as the first move of her game against Fischer, then copied 
Fischer’s reply as her own reply to Spassky’s first move, and so on.

T h e o r e m  51. G — G is always a zero game.

Proof. The moves legal for one player in G become legal for his opponent
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in — G, and vice versa. So the second player can win G — G by always mimick
ing her opponent’s previous move—if Left moves to GL in G, Right (as second 
player) can move to — GL in — G. If she plays in this way, the second player 
will never be lost for a move in G — G.

In a similar way, we can prove:

T h e o r e m  52 From G >  0 and H >  0, we can deduce G + H >  0.

Proof. The suppositions tell us that if Right starts, Left can win each of 
G and H. But he can then win G + H by always replying in the component 
Right moves in, and making the winning reply in this component In this 
way, Left cannot be lost for a move in G or H, and so will win the sum.

T h e o r e m  53. I f  H is a zero game, then G + H has the same outcome as G.

Proof This can be made to follow from the previous theorem, but we give 
it a separate proof. Play G + H, in exactly the same way as you would in G, 
never moving in the H component except to reply to an immediately previous 
move of your opponent in that game. This rule converts a winning strategy 
for you in G to one for you in G +  H, it being understood that the same 
player starts in both cases.

T h e o r e m  54. I f  H — K is a zero game, then the games G + H and G + K 
have always the same outcome.

Proof G + K  has the same outcome as (G +  +  (/f — /Q, by Theorem
53. But this can be written as (G +  H) +  (K — K \  which has the same out
come as G +  H, since K -  K  is a zero game.

Now our aim in this book is to find out who wins sums of various games, 
so that if H — K  is a zero game, it will not matter if we replace H by K. So 
in this case, we shall say that H is equal to K, and write H — K. We shall not 
usually distinguish between equal games, and so when we speak of the game 0, 
we mean to refer also to the games 1 — 1, * +  *, and so on. On occasions 
when it is necessary to make these distinctions, we speak of the form of a 
game (meaning some particular game, regarded as distinct from its equals) 
and the value of a game (G and H having the same value when G = H).

SOME MORE GAMES

The game We define j  = {0| 1}, and verify the equality 2 +  2 =  1
In Fig. 5 we have drawn the components of the game £ +  \  — 1, with letters 
for the names of various positions.
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g + e h +

F ig . 5. Strategic proof that * +  ^ =  1.

Initially, we are at the position (a, b, c) l  We consider first what happens if 
Left starts. He might as well move from a to d, to which Right replies by the 
move from b to h, then Left can only move from h to ;, and Right makes the 
last move from c to f  and wins.

If Right moves from b to k, Left can reply with a to d, and then wins with 
ft to ; as his reply to Right’s only move c to/ .  If instead Right makes the move 
c to f ,  Left can reply a to d, then we have b to h for Right, followed by the 
winning move h to j. (Note that in all cases we have the same 4 moves a-*  d, 
b -* h, h -*j, c -* f. This phenomenon often happens.)

Exercise. Taking |  as {01̂ } and f  as {^| 1}, give a strategic discussion of 
the equality 2 +  4 = 4.

The game |.  The game {01 *} is common enough to deserve a special name, 
so we call it up, and give it the special symbol T- Its negative {* | 0}—note 
that * is its own negative, like 0—is called down and given the symbol J. 
Since Left wins with the first or second move, |  is a positive game. It is the

value of the position ! 

remarkable equality

in our domino game. In Fig. 6 we illustrate the

{0|T} = T + T + *•

T + T + * -  {°IT}

F ig. 6. The upstart equality.
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In the illustrated position, the moves a - » /  and d -» k lead collectively 
to the zero position * +  |  +  * +  | ,  so we can use either as a reply to the 
other, and then mimic our opponent’s moves. So by symmetry we need 
only consider the moves c -*j, d -* I for Right, and a -* e, c -* i for Left, 
showing that each has its counter.

Now the moves: c -» j, d -» k lead to a position T +  T + i  =  T > 0 l  and 
d -* 4 c -* i lead to f +  f >  0, so that c -* j and d -* / are bad moves for 
Right Similarly, after a -» e, b h, we have a position * +  * +  d = d, 
and Right wins d, the moves being d -* k, k -* r. In the final case, Right replies 
to c - » i with a -* /,  and then follows one of ( f  m, b -* h\ (b -» g. /  -* n), 
and (d ~ * k ,f -* n) and an easy win for Right in each case. So indeed we have
T + T + * = {o| T}-

We close this introductory chapter with the details of a more formal 
approach, for those who might prefer it.

Construction. If L and R are any two sets of games, there is a game {L | R}. 
All games are constructed in this way.

Convention. If G = {L | R}, we write GL for the typical element of L, GR 
for the typical element of R, and refer to these (respectively) as the Left and 
Right options of G. Then the legal moves in G are, for Left, from G to G'\ 
and for Right, from G to G* and we write G =  {GL \ G*}.

Definition of G >  H, etc.
G >  H iff (no GR <  H and G ^  no HL\  G ^  H iff H >  G. G (| H iff neither. 
G i> H iff G ^  H; G <i H iffG £  H; G < H, G > H, G =  H, as usual.

Definition of G + H.

G +  H = {Gl + H,G  +  Hl \Gr + H,G + H*}

Definition o f  — G.

- G  = { —G* | - G L}.

Then we have all the statements of the following.

Summary. The Class Pg of all Partizan Games forms a partially ordered 
group under addition, with 0 as zero and -G  as negative, when considered 
modulo equality. This Group strictly includes the additive Group of all num
bers. The order-relation is that defined by

G > H iff G — H is won by Left, whoever starts 
G <  H iff G -  H is won by Right, whoever starts 
G = H iff G — H is  won by the second player to move, and 
G || H iff G -  H is won by the first player to move.
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The relation G || H is the relation of incomparability for this order, meaning 
that we have no one of G = H, G > H, G < H. We say then that G and H 
are confused, or that G is fuzzy against H.

Formal proofs of these statements from these definitions are to be found 
in the zeroth part of this book where in some places we were careful to word 
our proofs so as to include more general games, although we were then 
primarily interested in numbers. Informal proofs and explanations in terms 
of strategies have been given in this chapter.

However, there is one point that calls for special notice. The phrase 
“all games are constructed in this way” justifies the proving of theorems by 
induction over games. Thus if for all G we can deduce that P holds at G 
provided it holds at all options of G, then P holds for all games. The follow
ing argument shows that this is equivalent to our requirement that there be 
no infinite sequence of games each an option of its predecessor.

If such a property P does not hold for some game G =  G0, then it must also 
fail for some option G{ of G0, and then for some option G2 of G,, and so on. 
So unless P holds for all games, we obtain an infinite option-sequence. 
[This proof uses the axiom of choice.]

SOME INFINITE GAMES

At first sight it might be thought that the previous discussion makes all 
games finite. But the game co = {0 ,1 ,2 ,3 ,... j } has infinitely many positions, 
and yet is a perfectly good game, if a little biassed in favour of Left For since 
after the first move, we reach some finite game n =  (0, 1, 2, . . . ,  n — 1}, 
which lasts at most n moves, there can be no infinite option-sequence in w. 
But of course we can give no fixed estimate, before choosing the first option, 
for the length of an option-sequence. The tree of co is sketched in Fig. 7.

F ig . 7. The tree of cu.

MY DAD HAS MORE MONEY THAN YOURS

In this game, the players alternately name sums of money (for just two 
moves), and the player who names the larger amount is the winner. The game
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is essentially the same as

co — co =  {0 — co, 1 — a>,. . . ,  n — cu,. . .  | co — 0, a> — 1 , . . . ,  co — n ,.. .} ,

whose tree is rather complicated, though the complication is irrelevant in 
play. As childhood experience shows, there is not much point in starting 
first at this game. This observation is equivalent to the equality

co — co =  0.

The theory of games developed in the rest of this book is a grand generalization 
of the earlier theory found independendy by Sprague and Grundy for impartial 
games—those in which both players have the same legal moves. In the first 
edition of this book the term “unimpartial” was used for the wider class of games 
obtained by dropping this condition—we now adopt the nicer word “partizan” 
that was introduced in Winning Ways.



CHAPTER 8

Some Games are Already Numbers
“Reeling and Writhing, o f course, to begin with,” the Mock TUrtle 
replied; “And then the different branches o f Arithmetic—
Ambition, Distraction, Uglification, and Derision.”

Lewis Carroll, “Alice in Wonderland”.

In this chapter we consider several games in which the values of all, or 
almost all, the positions are already numbers. For such a game we shall 
obtain a complete theory as soon as we can give some rule for calculating the 
number which is the value of any particular position. We shall not always 
be able to do this, even when we can quite easily prove that all the values are 
numbers.

The diligent reader of the zeroth part of this book will already know quite 
a lot about numbers. But for the benefit of certain other readers, we summarise 
some of the more basic information here.

There is a notion of simplicity for numbers, which we can if we like define 
as follows. [This is not quite the same as the notion used in the zeroth part, 
but the differences are inessential.]

The number 0 is the simplest possible number, followed by the numbers 1 
and -1 ,  then 2 and — 2, 3 and -  3, etc, and so on through all the integers. 
Next come all rationals with denominator 2, followed by those with denomi
nator 4 (nor 3), then those with denominator 8, and so on through the dyadic 
rationals. After these come all remaining real numbers at once, including 
], 72 , and n as examples.

For the extensions to other numbers, see the tree in Chapter 0, the discussion 
in Chapter 3, and some of the remarks in the appendix to the zeroth part. In this 
part of the book we shall mostly talk only about ordinary real numbers, and 
the above discussions should be enough, but for the occasional comments 
about other surreal numbers we shall suppose that the reader is familiar with 
the zeroth part.

The most important game-theoretical property of numbers is that given 
by the simplicity rule ; if all the options GL and GR of some game G are known

SI
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to be numbers, and each GL strictly less than each GR, then G is itself a 
number, namely the simplest number x greater than every GL and less than 
every GR. (Theorem 11, Chapter 2.)

CONTORTED FRACTIONS

This game is actually played with numbers, so that it is not surprising that 
numbers arise in its solution. However, the complete theory is rather curious.

The typical position has a number of real numbers in boxes, and the typical 
legal move is to alter just one of these numbers. The number replacing a 
given one must have strictly smaller denominator, or, if the given number 
was already an integer, be an integer strictly smaller in absolute value. 
Irrational numbers are counted as having infinite denominator. Such a 
replacement will be legal for Left only if it decreases the number, legal for 
Right only if it increases it.

Thus from the position 3 j  Left can move to the positions [xj with 
x =  ^, 0, - 2, etc., since aft these are less than j  and have denominator
smaller than 5, and Right can similarly move to [x] with x = j, §, f, 1, 17{, 
etc. But in general Left will prefer to keep the numbers as large as possible, 
while Right will wish to make them small, so that in fact Left will choose 
x = \  and Right x = ,̂ if they play wisely. In symbolic terms, this means that 
we have the equation

( 2  = { S IS } -
So it is fairly easy to see that what has happened in this game is that we 

have imposed a distorted notion of simplicity, under which ^ is counted as 
simpler than £ because it has smaller denominator. Proceeding in order of 
this new kind of simplicity, we obtain the table

*  =  - i 0 H f H f f l l * 2 . . .

( x ]  =  . . .  - 1  - i ° 8 4 8 2 f I I 1 1 ^ 2 . . .

in which arbitrary fractions on the top line correspond to dyadic ones on 
the bottom line, in the respective orders of simplicity.

The well-known rule for Farey fractions tells us how to find new entries 
successively—if a/b and c/d are at some time adjacent in the top line, then 
the next number to insert between them is (a +  c)/(b +  d), and so this number 
will yield the mean of the two numbers corresponding to a/b and c/d in the 
bottom line. (This only happens if be — ad =  1.) Thus we have the equation 
[ 2  =  ‘i6» operating in this way on the adjacent numbers ^ and f  from the 
top line.

The general solution requires some of the theory of continued fractions, 
and since this is no part of our business here, we shall simply quote the
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answer. The proof involves also Berlekamp’s rule for interpreting sign- 
expansions (Chapter 3).

Each rational number x can be expanded as a simple continued fraction 
in two closely related ways:

-  1 1  1 _  1 1  1 1  
X Q +  b +  c +  . . . +  « +  1 a +  b +  c +  ... +  n +  1’

in view of the equation

1 1
n +  (1/ 1) n +  1

We obtain from this continued fraction expansion for x the dyadic rational 
value for [x) as follows.

Write down the integer a, with its sign, as the integral part of [xj. For the 
fractional part, we have the binary expansion • O'1-1 l c0d. . . ,  where we choose 
the particular representation so that this ends in 1. In other words, we read 
the partial quotients b, c , . . .  as alternate numbers of Os and Is, except that 
the first 0 is replaced by the binary point.

Thus

_ 1 1 1 1 
3 5 -  +  2 +  1 + 2 + 4 ,

and so we have

(The alternative form

2 i|]  =  2010 01 11 1  =  2 ^ .

2 1 I  I  1 I
+ 2 + I + 2 + 3 + 1

would yield a binary expansion ending in 0, and so is discarded.) Of course 
the numbers before the binary point will usually be written in decimal, so 
that we have a curiously mixed notation here!

For irrational x, we obtain an infinite continued fraction, and exactly 
the same rule works, except that we have no worries about double representa
tion. Thus for

, 1 1  , 1 x = 1 +  — — = 1 +  —
1 +  1 +  . . .  X

we have the binary expansion 1-101010... =  If. Since this x is the positive
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root of the equation x2 = x +  1, we have the mystic equation

i + ys _ s
~  3-

The function here called [x] is traditionally called “Minkowski’s Question-Mark 
Function,” and has interesting analytic properties. Its graph is shown in Fig. 8.

Suppose we have the position

0 + 0 + S + 0 + 0
but that Right is allowed to pass just once during the game, at any time he 
chooses. For what real number x is this a fair game?

The allowance for Right is equivalent to adding an extra component — 1,
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and so we must solve the equation [jc~| =  | ,  Now the number } has the binary
expansion 0-00110011001100. . . ,  and so the required x  is the number
represented by the continued fraction

1 1 1
x  =  -  -  -  .

3 +  2 +  2 +  . . .

Now writing t for the number

we find that

t =  1 +
1 + t ’

and so f2 = 2, whence t — since t is obviously positive, and this gives us 
the surprising answer

x  =
1

2 + V2 ‘

Problems. Solve the equations

V2i +  n ?  =  a

75] -  [72

4 0  =

0  +  E  =

\ n \  - 1 00

m = ¥ - 7 I f )

(b = i -  7 A )

( - - L - r )

( » - £ £ )
240585707tt -  755822109\

( £ . 76580827* -  240585706 /

We illustrate with the last equation (none of the others requires much cal
culation). The continued fraction for n is

, 1 1 1 1* = 3 +  — — -  ----
7 +  15 +  1 +  292 +  . . .

which we write as
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for a reason that will soon become apparent. So the expansion of [a] will be 

7 15 1 (76 +  1 +  215) . . .
t * \ t A------------------ > f  *  1 t —' " " A  \

3000000 11111111111111101111111111...111111111... 1110...,

and
0000  0001

is the corresponding expansion of Itoo 1- We conclude that E must be the 
number

I l_ 1 j_  1 J _
7 +  15 +  1 +  7 6 + 1 + 2 1 5  + . . . ’

or more simply

,  1 1 1 1 1 1£  — 3-|__— _ — -  _
7 +  15 +  1 +  76 + 1 +  x

Eliminating x we find the displayed answer. The calculations would have
been much harder if we had not the good rational approximation n =  f f f !

HACKENBUSH RESTRAINED

In this game, the appearance of the numbers is less expected, but they also 
appear less curiously. The game has analogues and generalisations which will 
be considered in other chapters. This variety of Hackenbush is played on a 
picture, consisting of black edges ( |)  and white edges (0) joining nodes. It 
is required that each node be connected via a chain of edges to a certain 
dotted line called the ground (sometimes also called the ceiling, or the walls).
Two nodes may be joined by more than one edge, and it may happen that
some edge joins a node to itself. See Fig. 9.

F ig . 9. A restrained Hackenbush room.
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At any time when it is his turn to move, Left (Black) may chop through 
any black edge, when that edge disappears, together with any nodes and 
edges no longer connected to the ground Right (White) moves in a similar 
way, by chopping white edges. The game ends when no edge remains to be 
chopped and the player unable to move is the loser.

Thus in Fig. 9 Left might start by chopping one leg of the table, which 
leaves the rest of the table unaffected but if at his next move he chops the 
remaining leg, the table disappears. He might alternatively chop away one 
petal of the flower in the picture—each of these petals is an edge whose 
two ends coincide. Right’s first move might be to chop one of the two white 
edges supporting the ceiling lamp—of these the lower is the better move, 
since it leaves him with a further free move. Alternatively, he may chop any 
edge of the standard lamp except the central column, and so on.

PRELIMINARY DISCUSSION

The positions

 L _L. A  V  1 V. A
0 1 - 1 2 2  2 - 2 3

have the indicated values. More generally, a position with just n black edges 
and no white ones will have value n, for Left can take the black edges in a 
suitable order so as to have n successive moves.

The position J has value for we have the equation

J =  {—  I JL> = {o|i} = 2

and similarly we find the equations

It appears that black edges favour Left, but less so as they get further from 
the ground while white edges favour Right in a similar way.

It is not hard to give an inductive proof of the following two propositions. 
(They must be proved together.)

(i) On chopping a black edge, the value strictly decreases—on chopping a 
white one it strictly increases.

(ii) The value of every position is a number.

On the other hand, we know no simple rule which enables us to compute
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this number for an arbitrary graph without to some extent playing the game.

However, there is a complete theory for trees. It turns out that if (?) is

some position P, then the value of the position ^  depends only on the

value of P. If the value of P is a real number x, then the value of ^  turns

out to be the number l :x  defined by the conditions:
For real x, the number 1 :x (the ordinal sum of 1 and x) has the first value 

from the series

x + 1  x + 2  x + 3  x + 4  x + 5
1 ’ 2 ” ’ 4 ’ 8 ’ 16

for which the numerator of the given expression exceeds 1. (We mean the 
numerator x +  n as  written, not the numerator of the number (x +  n)/2f~l 
when written as a rational fraction in least terms.)

In a similar way, the number ( — l):x (always negative) will have the first 
value from the series

x — 1, x — 2 x — 3 x — 4 x — 5
1 ’ ~ 2 ~ ’ 4 ’ 8 ’ ~T6~

in which the numerator is exceeded by — 1, This is the value of the position

^jp, when P has value x.

Taken together with the obvious result that the value of a position like

is x +  y, when P has value x and Q value y, these results enable us 
to evaluate all trees in Hackenbush restrained. It is customary to write the 
values against the edges, in the following way:

We explain the occurrence of the functions l:x  and — l:x  as follows. 
The moves from the position

^  are to and ^  for Left, ^  for Right.

So inductively, the appropriate function is the function l:x  defined by
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l:x  =  {0, h x 1 j l:x*}. Now this is a function which maps all numbers onto 
positive numbers, in order of simplicity. Thus 0, the simplest number, maps 
to 1, the simplest positive number. Then - 1  and 1 map to the simplest 
positive numbers to the left and right of 1, namely ^ and 2 respectively, and 
so on. We find under this map that the integers have images as follows

x = - 5  - 4  - 3  - 2  - 1  0 1 2 3 4 . . .
l ' x — -A- - L  A l  A 1 2 3 4 S
1,JC — 32 16 8 4 2 1 x  J H J

and then that other real numbers fill in linearly, which explains the above 
rule.

Note that the rule does not work for all numbers. For instance 
1:( —1/fi)) =  1 -  (1/co) (not 1 — l/(2aj)\ and 1 :a> = co (not co +  1). But the 
definition in terms of simplicity works for all numbers x, and the inductive 
definition 1:G = {0,1:GL|1:G11} works for all games G.

We postpone further discussion of the properties of this function until 
Chapter 15, which is its proper home.

The reader should now be able to see who wins in the position of Fig. 10. 
Plainly Black—he is exactly five sixtyfourths of a move ahead! (It never 
ceases to amaze and amuse me that such statements have a precise meaning!)

CHAINS, LOOPS AND INFINITE BEANSTALKS

It follows from the rules for trees that the sign-expansion (Chapter 3) of 
a chain can be read directly from the picture, reading +  for black edges, 
-  for white ones, from the ground upwards. So the values of the four chains
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in Fig. 11 have the sign-expansions

+  + + ( + - ) +  =3-11 =  3j, - ( - + ) -  =  - M l  =  - i f

+  +  + ( + - ) +  +  = 3111 =  3j, - ( - + ) -  +  =  -1101  =  - I f

where we have bracketed the first sign-change to help the reader apply 
Berlekamp’s rule. Recall that to obtain the binary expansion of the fractional 
part, for positive numbers we read 0 for —, 1 for + , and the converse for 
negative numbers, in either case adding a final 1.

Berlekamp has given a similar rule for the value of a circuit joining the 
ground to itself (Fig 11). We break the circuit at the node or mid-point of

an edge which is midway between the two sign-changes nearest the ground 
on each side (*s in the diagramX halves of edges appearing (as whole edges) 
on both sides of the fracture when they arise. The value of the circuit is then 
the sum of the values of its two component parts. The rule can also be applied 
to a single circuit at some distance from the ground—thus since the value of 
the left circuit in Fig 11 is 2, we have the equality illustrated in Fig 12. But we

F ig . 11. Berlekamp’s rule for loops.

F ig . 12. A head-shrinking equality.

have no general rule for computing values of arbitrary graphs in Hacken- 
bush restrained. Some more information will be given in Chapter 15.

It is perfectly possible to play Hackenbush on infinite trees and certain
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other infinite graphs, the rules extending naturally. When we do this, arbi
trary numbers can arise as values. So for instance the various beanstalks of 
Fig. 13 have the indicated values.

COL is a map-colouring game introduced by Colin Vout It is played with 
a map drawn on a piece of brown paper, a pot of black paint, and a pot of 
white paint. The players alternately colour countries of the map, subject to 
the conditions that no country may be coloured twice, and no two countries 
with a common frontier may be coloured the same colour. Of course, Left 
uses only black paint, and Right only white.

SNORT is a game introduced by Simon Norton. It is played between 
two farmers who jointly rent a certain farm, divided into fields. Mr Black 
buys (black) Bulls, and Mr White (white) coWs, on alternate market days. 
The animals bought on any one day are to be placed in a field which was 
previously empty, subject to the condition that no field containing cows may 
be adjacent to one containing bulls.

If we colour a field black or white according as it contains bulls or cows, 
we see that both games are played on a map (in the same sense as in the famous 
4-colour map problem), the restriction in COL being that adjacent regions 
may not be similarly coloured, while in SNORT they may not be dissimilarly 
coloured. This makes it natural to discuss them in similar terms, although 
as we shall see later, their theories are entirely different 

It is tedious to have to draw complicated maps to specify positions, so we 
shall simplify the presentation as follows. We discuss COL first The only 
effect of a country which has already been painted black in COL is to tint 
the neighbouring countries white, for these regions may only be painted white 
in future. Similarly, a white painted country causes its neighbours to be 
tinted black. A country that acquires tints of both colours black and white

w

F ig . 13.

THE GAMES OF COL AND SNORT



92 SOME GAMES ARE ALREADY NUMBERS

in this way might just as well be erased from the map, since neither player
will be allowed to paint it in the future.

In SNORT, these conventions are reversed—any field already coloured 
causes its neighbours to acquire tints of the same colour. But it is still true 
that a region tinted in both ways can be ignored. Once we have tinted regions 
according to these conventions, we can ignore all the regions that have 
actually been painted, for they have no further effect on the game.

So we shall represent positions in either of these games by graphs, as 
follows. The graph representing a given position will have a node for each 
region of that position which has not already been coloured, and two nodes 
corresponding to adjacent regions will be joined by an edge in the graph. 
The nodes are tinted black ( • )  or white (O) or both ( 0 ) or neither (•), and 
if we like we can omit nodes tinted both black and white. (But the 0  notation 
is still handy.) In Fig. 14 we show the graphs derived in this way from a
certain partly coloured map in both COL and SNORT.

There are some further simplifications we can make. An edge joining two 
oppositely tinted nodes in COL may be omitted, for it has no force (the only 
effect of any edge is to prevent the nodes at its ends from being similarly 
coloured). For similar reasons edges joining similarly tinted nodes in SNORT 
may be deleted. We have also indicated these simplifications in Fig. 14.

Simple graphs are now analysed in a manner which should by now be 
familiar. In the last pages of this chapter we give “dictionaries” for these 
two games. As well as evaluating simple positions, these dictionaries contain 
certain general statements which often enable us to simplify very complicated 
positions not themselves in the dictionary. The methods by which these 
results are proved will only appear later.

[We might remark at this point that we have found this sort of approach 
very useful in analysing games in general. One first analyses simple positions, 
building some kind of dictionary, often in a very unsystematic way. When 
patterns emerge, if ever, one can often prove general theorems, and then

(in COL) (in SNORT)

F ig. 14. How maps give graphs.
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these theorems enable us to ‘condense’ the dictionary, and on some fortunate 
occasions, to give a complete theory. Almost all the games used as examples 
here were first discussed in this way.]

It appears that in COL the values that arise are very restricted in kind. 
Richard Guy and I have shown that they are all of the form x or x +  * for 
various numbers x. For the inequalities below imply trivially that

Gt  +  * <  G <  G *+*

for any COL position G, and from this the desired result follows by induction. 
We do not know if denominators of 16 or more can appear in x.

All the values in the COL table can be found by the following sort of 
analysis. We have the equation

•-(. = {«(» * A. I •% •* -\}  = (°> — 2» al3, 1 +  *} =  1-

(found by examining the effects of the possible movesX which determines 
the value of the game on the left hand side in terms of simpler cases.

It is convenient to remember that the simplest number rule in its general 
form reads:

If there is some number x with GL <1 x <1 G* for all GL, GR, then G is 
equal to the simplest such x.

It is also convenient to note the equality {x|x} =  x +  * for all numbers x, 
which follows from a far more general identity later, and to note that x +  * 
is greater than all numbers less than x, less than all numbers greater than x, 
but incomparable with x. This also will be generalised later.

Since SNORT values are usually not numbers, the SNORT dictionary 
requires techniques which will be explained later. The abbreviations will also 
be generalised in Chapters 10 and 15.

A DICTIONARY OF FACTS ABOUT COL

(In general each statement given here has a dual statement in which black 
and white are interchanged and the inequalities are reversed.)

(1) Inequalities: the value of a position is unaltered or increased by either 
tinting a node black (mnemonic: hindering one’s opponent is no harm) 
or deleting any edge one end of which has a black tint (mnemonic: let my 
people go).

(2) Equalities: there are many circumstances in which we can say that
replacing one configuration by another does not affect the value.
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(In general, if two untinted nodes are joined to each other, and to the 
same set of the remaining nodes, we may tint one black and the other white.)

In general if in some configuration the value is unaltered both when we 
tint a certain node black and when we tint it white, then that node is “explo
sive” and may be deleted even when used to join the given configuration 
to another. So the above equalities are consequences of the following:

• — •  =  •  •  =  K

< - <  c - c
Other explosive nodes are indicated by the lightning bolts:
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k >  ' o i— i— i— i— i— i— i— i

(Any node in an untinted chain with at least three others on each side.)

! oetc.

(In each case the explosive node may be tinted without affecting its 
explosive character.)

Now we list the values of some simple positions (many others can be 
deduced from these using the above principles and identities):

= ... (any length) = 1 

= ... (any length) = \

— ... (any length) = 0 

■ •  i 1----- 1 = v

but for longer lengths 
we have

~ r
-  = i

From these we can deduce the value of any tree with just one tinted node 
from which lead only a number of chains of untinted nodes.

We can also deduce the corresponding values if the extreme nodes are 
tinted. (If such a tree is completely untinted, then either its central node 
explodes by one of the above rules, or the value is zero.)

t > - >  O -  D "

n - 0 -
(In general a diagram which has a symmetry moving every node and 

reversing any tints will always have value 0.)



A SHORT SNORT DICTIONARY

It is much harder to do justice to SNORT positions, although I feel that 
in fact SNORT has a much richer theory than COL There are some inequality 
and equality rules like those for COL, but since they are less frequently 
applicable we do not give many. Perhaps the most valuable rule is that if 
you can move in a node that is adjacent to every node not your own colour, 
you should do so. Our abbreviated notation is explained in Chapters 10 
and 15.

96 SOME GAMES ARE ALREADY NUMBERS

♦ • • • •   = —* = ±2= = ±2 •
= ±1 = 1  = 1|0 = 21 — 1

 i— o • — i 1----o all follow instantly from this rule.
= ±1 = ± 2

• ---- ----- • —  = 31*

   =  ±  l i  ±  i  • ♦ 4 > = 3 1 - 1 *  •------ 4 ♦ • =  3|*

= ±(3|0,1)« * ♦ ♦ > = {3|2 || 0 |-2 , *1-1*}

=  ± 1
-= ± 1 .= * -

• = 2|* • — • ----- = 2 |1  •  1 •  = 2|0

Perhaps it is fortunate that positions in SNORT games tend to break 
up rapidly, and that we can delete edges joining two nodes with the same 
tint, so that in practice we need only tabulate the values of small positions. 
Highly connected positions succumb easily to the above rule, so that in 
fact it is long chains that are hardest to analyse. The reader should have little 
difficulty in finding the best move in actual play, even for quite large positions.

Larger COL and SNORT dictionaries will be found in Winning Ways.



CHAPTER 9

On Games and Numbers
And now there came both mist and snow,
And it grew wondrous cold:
And ice, mast-high, came floating by,
-4s green as emerald.

Samuel Taylor Coleridge,
The Ancient Mariner

We know that not all games are numbers, and that for example the game
* =  {010} is not a number, since it is confused with 0. But since for every 
positive number x, we have — x < * < x, and since we have the equality
* +  * =  0, we can confidently handle all games whose values can be expressed 
as sums of numbers and *.

But the position in dominoes, which is equivalent to the position

 1- in SNORT, has the rather worse value {11 — 1}. This game G is strictly
less than all numbers greater than I, strictly greater than all numbers less 
than -1 ,  and confused with all numbers between — 1 and 1 inclusive. But 
fortunately once again, we have G +  G =  0, so that at least the situation 
does not get more complicated when we consider multiples of G.

Now in general we can get a lot of information about an arbitrary game 
G by comparing it with all numbers. The game G will define two “Dedekind 
sections” in the Class of all numbers (the Left and Right values), and any 
number between these two sections will be confused with G, while numbers 
above the greatest or below the least will be comparable with G in the 
appropriate sense.

This information tells us between which limits G lies, but there is also a 
mean value of G, which tells us where its centre of mass lies. We shall give 
algorithms for computing the Left, Right, and mean values in this Chapter.

Unfortunately, there is a large part of the argument that is inapplicable 
to the general infinite game. We adopt the convention of considering only 
short games in detail from now on, until Chapter 16, when we consider the 
differences between short games and long ones. A short game is one which has
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only finitely many positions in all. But we always explicitly add this adjective 
to the hypotheses of any theorem which needs it, and often add comments 
on general games later.

T h eorem  55. (The Archimedean principle.) For any short game G, there is
some integer n with —n < G < n .

[For general G, there is some ordinal a with — a <  G <  a.]

Proof. Take n greater than the total number of positions in G, and consider 
playing in G +  n. Left can win this by just decreasing n by 1 each time he 
moves, waiting for Right to run himself down in G. Since G +  n >  0, we 
have G >  -n ,  and similarly G <  n.

[In general we give an inductive proof taking for a the least ordinal greater 
than all aL, a*.]

THE LEFT AND RIGHT VALUES

We need to know which numbers x have x ^  G, and which y  have y <  G. 
These conditions define two Dedekind sections in the Class of all numbers, 
called the Left section L(G) and the Right section R(G), as follows.

A number x is put into the right-hand part of L(G) iff x ^  G, and so in the 
left-hand part if x < | G, while y  is put into the left part of R(G) if y  <  G, the 
right part if y  i> G.

In particular, if z is any number, L(z) has for its left part all numbers strictly 
less than z, z and greater numbers forming its right part, while R(z) has z 
and smaller numbers to its left, greater numbers to its right.

So L(z) and R(z) are the sections just to the left and right of z, respectively. 
For a more general game G, if L(G) is one of the two sections L{x\ R(x) for 
some number x, we call x the Left value L0(G) of G, while y  is called the 
Right value R 0(G) if R(G) = Uy) or R(y).

We introduce the obvious order on sections (S <  T  if some number is 
to the right of S and the left of T), so that L(z) <  R(z) for each number z. 
But for other games, the inequality goes the other way, for if L(G) <  x <  R(G), 
we have x <  G <  x, and so G = x. How do we compute these sections, in 
general?

T heo rem  56. We have L(G) =  m ax  R(GL) =  L, say,
GL

and R(G) =  min L(G*) = R, say 
G*

unless L < R, when G is a number, namely the simplest number x satisfying 
L < x < R, when we have L(G) = L{x\ R(G) = R(x).
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[For general G, we must replace max and min by sup and inf.]

Proof. We tackle the case L < R first If x is the simplest number between, 
then

xl < L < x < R < xr ,

so the moves from G — x  to G — xf, G -  x* are no good. But neither, in 
view of the definition of L and R, are those to GL — x and GR -  x, so that 
G — x, having no good move for either player, is a zero game.

In the case that L >  R, the moves to GL — x, GR — x  are bad for the 
same reason, if x  > L, x  < R, respectively. So we need only consider, if 
x > L, moves to G -  xR, and if x < R, moves to G — xL. But these fail, 
since we have x* > x > L in the first case, and x f  < x < R in the second.

STOPPING POSITIONS

When the value of a position is a number, neither player will wish to move 
in it, for any move by Left will decrease the value, and any move by Right 
increase i t  We can be kind to the players and agree to stop the game (possibly 
before its real end) as soon as the value becomes a number, and score positive 
values in favour of Left, negative ones in favour of Right. So we shall call 
positions of G which are equivalent to numbers the stopping positions of G.

Now Left will naturally prefer to arrange that when the game stops in 
this sense, its value will be as large as possible, while Right will prefer to 
make it small If they play in this way, the value of the game when its stops 
will be a perfectly definite number which depends only on who starts. 
Moreover, each player will prefer that when the game stops it is his opponent 
who is about to move (and so do himself some harm).

Now we can describe the situation by saying that if Left starts, the game 
will end at some number x, with some player P (Left or Right) about to play, 
by the equality L(G) =  P(x), and the corresponding assertion that if Right 
starts the game will end at a number y with Q about to play, by the equality 
R(G) = Q{y\ This is because Theorem 56 tells us that the Left and Right 
sections of G are computed exactly as we should compute the numbers x and 
y, and locate the players P and Q.

Summary. We can determine exactly what are the order relations between 
a game G and all numbers by simply playing G intelligently until it stops and 
then noting the value and who is about to play.

Examples

The game {514,7}. In this game, if Left starts, the game will end at 5, 
with Right to play, and so L(G) =  R{5\ the section “just to the right” of 5.
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If Right starts, the game ends with Left to play, at the number 4, if Right has 
any sense, and so R(G) = Lf4\ just to the left of 4. We conclude that G is 
strictly less than all numbers greater than 5, strictly greater than all numbers 
less than 4, and confused with all numbers between 4 and 5 inclusive.

The game {91 {712}}. Here L(G) =  R(9\ the argument being as before, 
but we have R{G) =  R(7), for if Right starts, moving to {712}, Left continues 
the game for one more move, before it stops at value 7 with Right to play. 
So the game is less than numbers greater than 9, greater than numbers less 
than or equal to 7, and confused with numbers between 7 (exclusive) and 
9 (inclusive).

The game {{310} | { | |  9}}. Here if Left starts we arrive at I f OX while if 
Right starts we stop at R($\ But these are not the Left and Right sections of 
G, for we have R(£) > IfO). So in this case, G is a number, namely the simplest 
number x satisfying L(0) <  x <  R(^X namely 0 itself. So in fact we have 
IfG) =  L(0), R(G) =  R(O), G = 0.

If we had replaced the position 0 here by the answer would have been
if by - 1 ,  the answer would still have been 0; and if by +1, we would no 

longer have had a number, and LfG) =  L(l), R(G) =  R(^).

Moral When computing Left and Right values, look out for the inequality 
L < R between Left and Right sections.

The games * and f. Since * =  (0 | 0}, we have If*) =  R(0), R(*) =  IfO). 
We need not beware, since L  is safely greater than R, and we conclude that 
* is greater than all negative numbers, less than all positive numbers, but 
confused with 0. Again, since f =  {01 (0 10}}, we find L(|) = R(O), R(|) = 
R(0), and so f is strictly positive (as we knew) but strictly less than all positive 
numbers. (Note that for f, we had L  =  R, so almost had to beware, etc. But 
not quite!)

So these games are infinitesimal in a totally new sense, for we have, for 
instance,

0 < f < - J - ,  0 < T < ^ - ,  0 < T < i
co Sq 2 )• • •

(2Mo being identified with the smallest ordinal having that cardinal), and so 
on. (Informally, 0 <  t  <  1/On.) Rather than invent some long adjective to 
qualify the word infinitesimal in this sense, we simply call such games small. 
So a small game is any game G for which we have - x  <  G <  x for every 
possible positive number x. Some small games (like |)  are positive, others 
(like j) negative, and still others (like •) are fuzzy, while of course zero is itself 
a small game. So the small World is indeed a microcosm of the larger one.



THE ALL SMALL GAMES

We call a game all small if all its positions are small games.

T h e o r e m  57. G is all small if and only if every stopping position of G is zero.

Proof. If some position of G were a non-zero number, it would be a non
small position of G. So we need only prove that if all the stopping positions 
are zero, then so are the Left and Right values. This follows immediately 
from Theorem 56.

ALL SMALL GAMES 101

Note. There are positive games smaller than all positive all sma 
One such is the value {01 {01 —2}} of the domino position

multiples of |  are among the largest of all small games.

1 games. 
. The

- THE MEAN VALUE THEOREM

We shall prove that for every short game G there is a real number m, called 
the mean value m(G\ such that for every finite n, the game nG is “nearly 
equal” to nm. This result, for a slightly different class of games, was first 
conjectured by J. Milnor, and first proved for that class by O. Hanner. A 
simplified proof; for the Class of games considered here, was given by Elwyn 
Berlekamp. All these proofs depend on a fairly complicated analysis that 
yields a strategy for playing nG so as to ensure a stopping value near the 
desired mean value nm.

The first proof given here is the remarkable “1-line” proof found by Simon 
Norton, which proves the existence of the mean value and finds good bounds 
for nG, but which does not enable us to compute this value! Then we shall 
give another proof; found by Norton and the author jointly, which gives us 
an easy algorithm for computing the mean value and much other information. 
This new proof formalises and simplifies an idea whose germ is found in the 
papers of Milnor and Hariner but which was discovered only after a com
pletely independent analysis.

We start with some obvious inequalities about the Left and Right values 
L0(G\ R0(G\ Recall that these are the numbers next to the sections L(G) 
and R(G).

T h e o r e m  58. We have

R0(G) +  R0(H) «£ R0(G +  /* )<  R0(G) + L0(H) <  L0(G +  H)
<  L0(G) +  L 0{H).

Proof. These are obvious in terms of strategies. Thus Left, playing second
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in G +  H, can guarantee a stopping value of at least R0{G) + R 0(H) by reply
ing always in the component Right moves in, and following in that component 
his strategy yielding its Right value. The others can be proved similarly, but 
are in fact equivalent to this one. For instance

R0(G) = R0(G + H - H ) >  R0(G + H) +  R0{ -H )  = R0(G + H) -  L0{H).

T h e o r e m  59. {The mean value theorem.) For every short game G there is a 
number m{G) and a number t {both real) such that

nm{G) — t <  nG <  nm(G) +  t

for all finite integers n.

Proof. After the previous theorem, it will suffice to prove that L0(nG) and 
R0{nG) have a difference bounded independently of the number n, for then 
(l/n)R0(nG) and {l/n)Lo(nG) must converge to a common value m(G\ since we 
have the inequalities

R0{G) <  -  R0{nG) *£ -  L^fnG) <  L^IG). 
n n

But we have

R{nG) <  L{nG) = R({n -  1)G +  GL) <  R(nG) +  L(G -  GL)

for the G1 for which the max in Theorem 56 is attained.

Note. The proof shows also that the number t is bounded by max L^G  — GL\  
and similarly, bounded by max Lq(Gr — G). These inequalities will be im
proved later.

THE TEMPERATURE THEORY

We can regard the game G as vibrating between its Right and Left values 
in such a way that on average its centre of mass is at m{G) So in order to 
compute m(G) we must find some way of cooling it down so as to quench 
these vibrations, and perhaps if we cool it sufficiently far, it will cease to 
vibrate at all, and freeze at m(G).

Now the heat in a game comes largely from the excitement of playing it— 
if there are positions in G from which each player can gain tremendously 
by making a suitable move, then G will naturally be very heated! So for 
instance the game {10001 —1000} is a very hot position, for although its 
mean value is zero, the player who moves first in it stands to gain 1000. On 
the natural scale, the temperature of this game is 1000°.

On this theory, we should be able to cool G through a temperature of t°
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by making it just that much less exciting to move in each position of G that 
has not already stopped So we shall define a new game G, (G cooled by t) by 
charging each player a fee of t every time he makes a move, until the value 
becomes a number. A formal definition is complicated slightly by the need to 
detect when this has taken place.

Definition. If G is a short game, and f a real number >  0, then we define the 
cooled game Gt by the formula

G, = {GL, - t \ G p, + t},

unless possibly this formula defines a number (which it will for all sufficiently 
large t). For the smallest values of t for which this happens, the number 
turns out to be constant (that is, independent of t \  and we define G, to be 
this constant number for all larger t.

[The reader will see that our definition of G, contains an assertion, and so 
does not really count as a definition until this assertion is verified to hold for 
all short G. The reason the theory does not work for general games G is that 
this assertion fails to hold for certain long games G.]

To see how the definition works, we treat the case G = {411}, supposing it 
already established that 4, = 4, 1, =  1 for all t. Then our formula gives 
G, =  {4 — 1 11 +  t} =  G(t) unless perhaps when G(f) is a number, when...?  
When is G(t) a number? Obviously when t exceeds l£. What number is G(f)? 
The answer to this question depends on t,and in fact we have

G(t) = 2^ for < t <  2

2 for 2 <  t <  3

1 for 3 < t <  4

0 for 4 <  t.

So as the definition asserts, G(t) is a constant number (2}) for all the smallest 
numbers t for which it is a number (namely the numbers t with 1  ̂ <  t <  2), 
and so we have G, =  {4 — t | 1 +  t) for 0 ^  t <  1|, and G, = 2} for all 
larger t.

We define the sections L,(G) and R,(G) to be L(Gf) and R(Gt).

T h e o r e m  60. For all short games G and real numbers f ^  0, we have 

L,(G) =  max R,(GL) -  t =  L p say,

and

R,(G) =  min L,(GR) + t =  Rt, say,

un/ess possibly L, < R,. In this latter case, G,isa number x, namely the simplest
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number between La and R^for all small enough u with L„ <  R„ and we then have 
L,(G) =  L{x\ R,(G) =  R(x).

Proof. This follows immediately on applying Theorem 56 to Gr For the 
moment, we are continuing to suppose that G, is well-defined.

THE THERMOGRAPH OF G

We find it convenient to describe the various numbers associated with G 
on a diagram. The Left options of the G with which we are concerned will 
usually be greater than the Right ones, so we shall reverse the normal con
vention and put positive values on the left, and negative ones on the right 
(This happy convention has various other advantages which will appear 
gradually.) The temperature scale is vertical, and at height t we indicate the 
Left and Right values of Gp which define the Left and Right boundaries of the 
thermograph of G. (We are indebted to Elwyn Berlekamp for this snappy 
substitute for our own phrase “thermal diagram”.)

As our example, we take the game G =  {{715} | {411}}. The calculation 
of the thermal properties of this game is illustrated in Fig. 15, the game itself 
being drawn below its thermograph. Since the games 7, S, 4 and 1 are already 
numbers, they remain constant when cooled by arbitrary t, so that their 
thermographs are vertical lines above the appropriate numbers.

Now the Left boundary L,(H) for the game H =  {71 5} is obtained, at 
any rate until H, becomes a number, by subtracting t from the Right boundary 
of the game 7. Since this is vertical, and subtraction corresponds to moving

Fio. IS. Computing thermographs.
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right in the diagram, this gives a line starting at 7 and moving diagonally 
up and right. Similarly the Left boundary is a line starting at 5 and initially 
moving diagonally up and left But since these lines meet at a height of 1 
above the number 6, H, will be the constant number 6 for all t larger than 1, 
and the Left and Right boundaries will be vertical above this point.

So the thermograph of H is the pyramid / 7, 5 \ —that is to say, an isosceles 
right-angled triangle with hypotenuse on this interval, except that, like all 
thermal diagrams, it has a mast on top. The Right boundary of this diagram 
consists of the right side of the triangle together with the mast.

In a similar way, the game K  =  {411} yields the pyramid / 4 ,  l \ ,  with 
a mast which starts at a height of 1  ̂above the point 2 .̂ Its Left boundary is 
the left side of this pyramid together with the mast. Now we compute 
L,(G) =  R,(H) -  t, R,(G) = L,(K) +  t (until G, becomes a number) by 
pushing the Right boundary of H still further right, and the Left boundary of 
K  still further left Applied to the Right boundary of H this yields a line 
starting at 5 and travelling vertically upwards until t =  1, then diagonally 
right and up thereafter. From the Left boundary of K  we get a line vertical 
till t = lj, then diagonally up and left.

These lines meet at a height t = If directly above the value 4f, and so they 
define the Left and Right boundaries of G below this point, these boundaries 
above this point being vertical. So the diagram for G is a lop-sided “house” 
with a mast.

When we consider the implications of this procedure for the general short 
game G, we obtain:

T h e o r e m  61. For any short game G, the thermograph is a region whose 
Left boundary is a line proceeding either vertically or diagonally up and right in 
stretches, the Right boundary being in stretches vertical or diagonal up and left. 
Beyond some point, both boundaries coincide in a single vertical line (the mast). 
The coordinates of all corners in the diagram are dyadic rationals.

Proof. This requires only the observation that on subtracting t from a line 
which is vertical or diagonal up-and-left we obtain one correspondingly 
diagonal up-and-right or vertical, and that two such lines aiming towards 
each other must meet, at a point whose coordinates can be found with a single 
division by 2.

The proof of the theorem assures us at last that the definition of G, has 
the properties presupposed in it, and incidentally makes Theorem 60 an 
honest theorem.

Now we ask about the corresponding sections L(Gt) and R(G(). On which 
side are they of the numbers near to them?

Theorem 62 (See Fig. 16). The sections L(GJ and R(Gt) are "just inside”
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the boundary of the diagram on vertical stretches, “just outside” on diagonal 
stretches. At points of the mast above its foot, L(G,) is to the right of R(Gt) in the 
diagram; that is to say, L(Gt) < R(Gt\  At corners of the diagram the sections 
behave in the same way as at immediately smaller values o f t. (So their behaviour 
is “continuous downwards".)

F ig . 16. The left and right sections of G, are indicated by the dashed lines. Note how they cross the 
firm lines at corners, and cross each other at the foot of the mast. This behaviour is typical.

Proof. These properties are preserved in the passage from the diagrams for 
Gf and G* to that for G.

Now Theorem 62 makes it natural to prolong the boundaries just a little 
way downward below the line t =  0. These prolongations are to be vertical 
when the corresponding section at t =  0 is just inside the thermograph 
diagram, and diagonally “outwards" when it is just outside. When we do this 
(as we shall), we read off the nature of the sections for t -  0 from the diagram 
as well The rules for computing these prolongations are the obvious exten
sions of the rules for the rest of the diagram, and we shall say no more about 
them. The reader who examines Figs 15 and 16 closely will see that these 
prolongations were already present.

T h e o r e m  63. G > x  implies G, >  x

(x +  GX = * +  G,

(x -  G\ =  x -  G, 

for all short games G and dyadic rationals x.

Proof. Obvious from the properties and construction of thermographs.



T h e o r e m  64. (G +  H \ = G, +  H,for short G, H.

Proof. If G, H, or G +  H is equal to a number x, this follows from Theorem 
63. Otherwise, we can use the inductive definitions of Gp Hp (G + H \ to 
give a 1-line proof:

G, +  H, =  {GL, -  t + HVG, + HL, -  t \G R,+  t + H ,,G , + HR,+  t}

= {(G + H f \ ( G  + H f }  =(G + H)r

T h e o r e m  65. I f  G ^  H, then G, >  Ht. In particular, from G =  H, we can 
deduce G, =  H,.

Proof. We have G 5s H iff G — H >  0, so this theorem follows from the 
previous one.

Note. The contrary possibility that the value of G, might depend on the 
form of G makes Theorems 63 and 64 slightly more subtle than they appeared 
at first sight. But all is now well.

Definition. We write Gx  for the ultimate value of Gr and tL for the value of t 
beyond which L{Gt) =  L(GX), tR for the value beyond which R(Gt) = R(Gm). 
The numbers tL and tR are called respectively the Left and Right temperatures 
of G, and their maximum is just the temperature t(G) of G. See Fig. 16.

T h e o r e m  66. Gm is none other than the mean value m(G) of G. (From now on, 
we use the new notation Gw.) We have the inequalities

L(Gt) <  L(G) <  L(G,) + t

R(Gt) -  t R(G) <  R(Gt)

t(G +  H) <  max (t(G), t(H))

(and similar inequalities with t(G) replaced by tL(G), tR(G)\ and also the equalities

tL(G) = tR( -  G), t(G) — t(~  G),

and the “cooling equality”

<G,)« =  < W

Proof. The first statement follows from Theorem 64 and the facts that 
L(Gt) <  L(G), R(G) <  R(Gt\  which, like the remaining inequalities of the 
next two lines follow from the assertions about the slopes of the Left and 
Right boundaries. The third inequality is proved as follows: since for 
t > t(G\ t(H) we have G, = Gx, Ht = Hx, for such t we have

( G  +  H ) ,  =  G ,  +  H „

THE THERMOGRAPH OFC 107
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a number. So such t are also greater than t(G + H \ The inequalities about 
— G are obvious. So we arc left with the cooling equality, which has a 1-line 
inductive proof.

This theorem implies in particular that we obtain the thermograph for 
G, by submerging that for G to the depth t (see Fig. 17). In other words, the 
way we cool a game is by pouring cold water on i t !

“Thermography” has been much extended and generalised by Elwyn 
Berlekamp and his co-workers, who have applied it to “Go” and other tradi
tional games in the following works:

E. R. Berlekamp, Blockbusting and Domineering, J. Combin. Theory Ser. A, 49(1988) 67-116.
Elwyn Berlekamp, Introduction to Blockbusting and Domineering, in The Lighter Side o f 

Mathematics (R. K.Guy & R. W. Woodrow, eds.), Spectrum Series, Math. Assoc, of America, 
1994, 137-148.

Elwyn Berlekamp, An economist's view of combinatorial games, in Games o f No Chance, 
Proc. MSR1 Workshop on Combinatorial Games, July 1994, Beikeley CA (Richard Nowakowski, 
ed.), MSR1 Publ. 29, Cambridge University Press, pp. 365-405.

Elwyn Berlekamp & David Wolfe, Mathematical Go: Chilling Gets the Last Point, A K Peters, 
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CHAPTER 10

Simplifying Games
You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape :
Still keeping one principal object in view—
To preserve its symmetrical shape.

Lewis Carroll, "The Hunting o f the Snark"

One quite valuable way to simplify games is to simplify our notation for 
them! (This is more important than it might seem, because even with the 
best will in the world, the names of games can get inordinately long.) So 
we first present some useful abbreviations.

We omit the curly brackets round games whenever this is possible without 
too much confusion—so for instance we shall write A, B \C  for the game 
{A, B | C}. Next, we need some way of distinguishing between {{A \ B} \ C} 
and [A | {B | C}}, and so we introduce as a ‘stronger* separator than |, when 
these games become A \ B || C and A B \C  respectively. (A \\B \C  may be 
pronounced “A slashes B slash C”.) Thus the game we used as an example for 
temperature theory would now be called 7 1 5 1| 4 11. Sometimes it is handy to 
introduce triple slashes |||, but usually we can get along quite happily with 
judicious use of brackets to supplement the above conventions.

The initial positions of many games are of the form

{A, B, C ,. . .  | -  A, - B ,  —C ,...}

being symmetrical as regards Left and Right So we introduce the abbrevia
tion ±(>4, B,C , . . .) for this game. In particular, the notation ±G will mean 
{G | — G}. Note that this will prevent us in future from using ±  to denote an 
ambiguous sign, so that the phrase “ -I- x  or - x ” will appear more commonly 
than usual from now on. Finally, there are many positions of the form

{A, B ,C ,. . . \A ,B ,C ,. . .}  

in which the moves for Left and Right are identical, rather than symmetrical.
109
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We shall use
{A, B,C , . . .}

as an abbreviation for this game.
Some other notational conventions for particular games will be introduced 

in our Chapter 15. A fairly complete dictionary is given at the end of the 
book.

However, the real simplifications we have in mind concern the form of G 
rather than its name. The main problem is to see how we can simplify the 
form of a given game without affecting its value. We first discuss some modi
fications which might change the value, but in a predictable way.

T heorem  67. The value of G is unaltered or increased when we
(i) increase any GL or GR,
(ii) remove some GR or add a new GL,
(iii) replace the GR by the KR,for any game K  ^  G.

Proof. Let H be the game obtained by so modifying G. Then in the game 
H — G it is easy to check that Right has no good first move.

Informally, it is even more obvious that these modifications are in Left’s 
favour, for giving him new moves or prohibiting certain moves for Right will 
not harm Left These principles are used repeatedly in analysing individual 
games, often in very much more general forms.

DOMINATED AND REVERSIBLE OPTIONS

Suppose two different Left options of G are comparable with each other, 
say GL' <  G2*. Then we say GL> is dominated by G2*, since Left will plainly 
regard the latter as the better move. Similarly, if GR‘ ^  G*° (note the reversed 
inequality) we call GR' dominated by GR°.

Now suppose instead that the Left option G2-0 has itself a Right option 
Gt °*°, say, for which we have the inequality G2-0*0 <  G. Then we say that the 
move from G to GL° is a reversible move, being reversible through GL°*°. 
Similarly a Right option G*‘ of G is reversible (through GR,L') if and only if it 
has some Left option GR,L‘ >  G. It turns out that whenever one player 
(Left, say) makes a reversible move, his opponent might as well reverse it 
(for he improves on the original position by so doing). So instead of moving 
from G to G2-0. Left might as well move straight from G to some GL°R°L. A 
formal version of this result is part of the next theorem.

T h eo rem  68. The following changes do not affect the value of G.
(i) inserting as a new Left option any A <i G, or as a new Right option any 

B i> G.
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(ii) Deleting any dominated option
(iii) I f  GLo is reversible through G*-0*0, replacing GL° as a Left option of G 

by all the Left options GLaR°1' of G1**0.
(iv) / /  GK‘ is reversible through GR,L‘, similarly replacing GR' by all the

q R,L,R

Proof. Because of the importance of this theorem, we give a more detailed 
proof. Suppose first that A < | G, and let H = {GL, A | GR} be the modified 
game in (i). Then in H — G the moves from H to GL, GR have as counters 
those from — G to — GL, — GR, and conversely, and the move from H to A 
yields the position A — G < l 0 by assumption. So there is no good move in 
H — G, whence H =  G.

Part (ii) now follows, for if GL> is dominated by G*-0, and H  denotes G with 
GL‘ deleted, we have GL' < Gto<i H, and so the insertion of GL‘ will not 
affect the value of H. Recall the fact that for any game G and any GL, GR, 
we have GL <i G <l GR, for from the difference G -  GL or GR — G, Left 
can plainly move to 0. (This theorem is part of Theorem 0 of part 0!)

Part (iii) is the most important and least obvious part. Let us write 
G =  {Gto, Gl | GR}, H =  {Gl °r°l , Gl | G*}, where GL denotes the typical 
Left option other than G1-0 of G. Now consider the difference

H -  G =  {GLoRoL, Gv  | GR} +  { -  GR | -  GL, -  GLo}.

The moves from H to GL or GR and from — G to —GL, —GR counter each 
other, so we need only consider those from H to GLoRqL and from — G to 
-  Gl °. The first of these is shown to be bad by

q LoRoL ^  QLoRo ^  q

and the second is countered by the move from — G*-0 to -  GtoR°, after which 
Right is to move in the position H -  GLaRo. His moves from — G^0*0 to 
_ q LoR0l have counters in H, so he must move from H to GR. But this is a 
bad move, since G* — G*"0*0 ^  GR — G i> 0.

Part (iv) follows by symmetry.

THE SIMPLEST FORM OF A SHORT GAME

Now let G be a short game. We aim to find the simplest form of G. By induc
tion, we can suppose that each game GL, GR has already been put into sim
plest form, if we like. In any case, we proceed as follows—eliminate from G 
any option which is dominated by some other option, and then replace any 
reversible option G^0 or GR‘ by the corresponding smaller positions GL°R°L 
or g r ' l 'r , respectively. Repeat, if necessary, until no option of G is dominated 
or reversible.
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T heorem  69. Suppose that G and H (not necessarily short) have neither 
dominated nor reversible options. Then G and H are equal if and only if  each 
Left or Right option of either is equal to a corresponding option (Left or 
Right respectively) of the other.

Proof. Suppose G = H, and consider playing G — H. The move for Right 
to G* -  H must have a reply for Left, say to either GRL — H or GR -  HR. 
The former case is impossible, for it implies GRL ^  H = G, so that GR was 
reversible in G. So we have proved that for each GR there is some HR with 
Gk >  HR. Since similarly each HR >  some GR, and neither game has domi
nated options, we must in fact have each G* =  some HR and conversely. 
Similar statements hold for the Left options.

This theorem assures us that each short game has a unique simplest form. 
We shall now discuss some examples.

Examples. The position {T I T}- We know already that

{tit} > {o|t} = T + t + *
obviously greater than * =  f*. So t  is reversible through * as a Left option, 
and can therefore be replaced by *L =  0. So we have {T 11} =  {01 T}. Since 
there is no 0*, 0 cannot be reversible in this (indeed, 0 can never be reversible 
in any game), and since {011} is positive (Left can win, Right can’t), f is not 
reversible as a Right optioa So {t 11} =  {01 T} in simplest form.

(Recall that f is the game {01 *}, where * =  (0 10}.)

The game x  | y. Let x  and y be numbers, and consider the game x | y. Then 
if x <  y, this is the simplest number between x and y, so we shall consider the 
contrary case x ^  y. Then plainly the game x | y has no dominated options. 
Moreover, its thermograph is the pyramid / x, y \ ,  and so x|y determines 
the numbers x and y. It must therefore be in simplest form, for if the option 
y  (say) were reversible, we should have x | y = x | y1*  or {x | }, which games 
have different thermographs.

Now we assert that for any number z, we have (x | y) +  z =  (x +  z | y  +  z.) 
This is because in the difference

(x |y ) +  z +  ( - y - z ) | ( - x - z )
the moves not in z have exact counters, while the move for Right (say) 
from z to z* is countered by Left’s move to —y  — z, since by the thermo
graph, we have x | y  > y  +  (z — zR\

This kind of translation invariance allows us to normalise x | y to the form 
u ±  v, where u = |(x  +  y), v =  |(x  — y). Of course it holds only for x > y, 
and shows that in this region, x | y exhibits a strikingly continuous behaviour 
for all real numbers x and y.
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Fig. 18. The game x\y.  Note: Points on boundaries here behave similarly to the points just
South-East ( \ ) of them.

The game x  ± a ±  b ±  . . .  ±  k. Let x, a, b ,. . . ,  k be numbers. Since ± t is its 
own negative, and is zero if t <  0, we can suppose that a > b >  c >  . . . > k ^  0. 
Then the thermograph of ± a ± b  is sketched in Fig. 19. This shows that 
—a +  b < ± a  ±  b < 4-a — b. But this shows us that in the game

± a  ±  b =  {a ±  b, ± a  + b \ —a ±  b, ± a  — b}

Fig. 19. Thermographs of ± a ± b  and x ± a ± h ± . . . ± k .
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the options ± a  + b and ± a  -  b are dominated, for the difference between 
the two options on either side is just that between ± a  ±  b and a -  b. So in 
fact ± a  ±  b = {a ±  b \ —a ±  b}, for since we know the simplest form 
{a +  b | a — b} of a ±  b, we can see that this option is not reversible. In a 
similar way, we find that the simplest form o f x ± a ± b ± . . . ± k i s

{x + a ± b ± . . . ± k \ x  — a ± b ± . . . ± k }

and that its thermograph is as shown.
Of course this uses the ordering a > b >  . . .  >  k, and is entirely concordant 

with experience and expectations. For since the game ±a  represents an 
advantage of a move to the first player to move in it, when playing a sum of 
such games, the first player will take that with the largest a, then his opponent 
will take the next largest, and so on. In particular, the Left value will be 
x + a -  b + c — . . . ,  and the Right value x - a  + b — c + __

In practice it is often simpler not to normalise games x |y  to the form 
u ± v ,  but the rules still apply—in a sum of such games one should always 
move in that with the largest diameter x  — y. (The diameter as here defined is 
twice the temperature of this game.)

DOMINO POSITIONS AND PROPOSITIONS

We return to the game with dominoes discussed in Chapter 7. To avoid 
pages full of little squares, we represent positions by graphs in which nodes 
represent squares, and edges join nodes representing adjacent squares. 
(Compare our conventions for COL and SNORT.) In this form, Left’s move 
is to remove two nodes joined by a vertical edge, while Right removes a pair 
of nodes joined by a horizontal edge.

Note that the game could be played on any graph in which two kinds of 
edges are by definition called horizontal and vertical, but the addition of 
new such graphs does not seem to make the game any more interesting. 
Similar comments are often applicable to other games we shall discuss.

We attach at the end of the chapter a dictionary for dominoes like those for 
COL and SNORT. To show how the dictionary was prepared, we discuss in 
detail some of the results, and some particular positions. Most of the results 
referring to general positions are due to Norton.

0. A graph like (for instance) has the same value as the correspond-
“ a ?

ing graph ̂  f-T . (For the possible moves are in one-to-one cor

respondence.)
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as

1. A position like has the same value as (For the

two moves for Vertical (Left) through the central node are equivalent.)
2. If we delete a horizontal edge or introduce a new vertical edge, the 

value is unaltered or increased (For these cannot harm Left or help 
Right.)

3. (g} — + • ^ H)  . (For the linking harms only Right.)

4. If the starred edge in (§}*-• can be deleted without affecting the value of 
this position, tlen the same holds of the starred edge in

(This edge is called explosive.) (From the inequalities

© ~ < £ ) * Z ( G )  *“ < § ) = (£ )— ^ ? )- )
Now we discuss some particular positions.
The position Q w e  have already discussed in Chapter 7, where it appeared 

. Since the players have essentially unique moves, its value is plainly

{11 — 1} =  ±1. Now the position has the same value, for the additional
move for Left is to J  (value *) which is dominated by the move to 1. This 
shows that the new edge is explosive, and so we have for instance

P_ T
n  ^  ± l  <s>

In general, let us note that if Left has at most n + 1 moves, even supposing 
the collaboration of Right, and he actually has a first move leading to a 
position of value n, then this move dominates all others. In the position 
r a ,  for instance, Left’s move to J +  J =  2 is dominant, and Right has 
essentially only one move, tof t (, so that we have J J |  =  2 | — £ = f  ±  lj. 
(The form 2 1 —£ is better in practice, £ ±  l£ ‘in theory’.) So this position has

mean value J. The two moves for Left (say) are equivalent in L -  so this

T
position has value { -  I 11} = 0 . This result enables us to say that |  |  has

also the value 2 1 — and so the new edge in it is explosive.

We are now in a position to evaluate the 3 x 3 square . (We should
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obviously describe sizes in terms of nodes here, since these correspond to

Now it is trivial that - 2  <  G (add 2 to G and see how easy it is to win), 
so the Left option ^ | —2 is reversible through —2, and so can be replaced by 
the Left options (there aren’t any) of —2  In this way, we see that G simplifies 
to ±  1, its simplest form. . .

is plainly a lower bound (break the rectangle across the dotted line), and a 
quick strategic discussion shows that Left cannot win the difference

Larger rectangles are something of a problem. But if we only want to work 
out who wins, we can employ the following type of argument From the 
4 x 4  square, Left can move to

and so the 4 x 4 square is a win for the first player. Similar arguments can 
be found for the 4 x 6 rectangle, using the value of the position _ #_J.
which does not take too long to compute.

The 5 x 5  square can be shown to be a second player win (and so have 
value 0) by the following special strategy. This gives Left 6 moves, or keeps 
Right down to 5 moves and gives Left 5 moves.
Supposing Right’s first move is in the top left 3 x 3 square, make the moves 
a,6 of the first drawing if we can, followed by any c in the top three rows, and 
the moves d, e , f  If not, make the move b of the later drawings and occupy 
the centre if possible, followed by any move d other than e and/ of the second 
drawing, then such of those moves e and /  which are still legal If this is 
impossible, the move c of the third drawing might be available, and lead 
back to a similar strategy to our first attempt.

It is not hard to show that the 3 x 4 rectangle — "  -has value l£. For this

r r n  i n  m  n
^  _ _ = _ _ =0,

t U " n L j " n  j
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/  e

f  d c e b

a

f

iii b f
\11 b

li I--Ik 1/y J ? i
i

a d
T

a\

F ig . 20. The equation 5 x 5  =  0.

Jf not, the position is either as in the fourth drawing, with Right’s third 
move in the top left 3 x 3 square, say, when we can make the moves of that 
drawing, or Right has taken the centre. In the last case, we do not really 
break any horizontal lines when we partition as indicated into 4 regions of 
values 1, and so we are at least half a move ahead.

The zig-zag patterns •, J , . give rise to an interesting
sequence of values. Letting Z Z n be the value of the n-square zig-zag pattern, 
we find ZZj =  0, ZZ2 =  1, ZZ3 = *, ZZ4 = 1 10, ZZ5 =  ±1, ZZ6 = 2 1 *, 
ZZ7 = ±1*, ZZ8 =  2 11 II0, ZZ9 = ± (2 10 ,2 1 *), Z Z 10 =  1*, and
Z Z j ,  =  ZZ 9-9*. The later values get more complicated, but we can fairly 
easily calculate them almost exactly.

In fact we find

Z Z Sn+1 or 8ji+ 3  = 0-ish

Z Z Sn+l or g(I_3 =  ±  1-ish

^■^8ii+2 = l*ish
Z Z 8n_2 =  2 10-ish

ZZ4„ = (n | u — 1 || n — 2 III n — 3 . . .  1 |||||||||||| 0)-ish

where the suffix “-ish" means “infinitesimally shifted”. In other words, we
write G-ish for G +  e, when e is infinitesimal In these particular cases, of
course, the various infinitesimal shifts e are small games.
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The game Z Z ^  has mean value 1 — (1/2"), is strictly less than 1, and 
strictly greater than any negative number, but not greater than 0. These 
results follow from the thermographs:

The rectangle ^  has a very interesting value. Note first that we have

n  n  1= 0, so the value is zero or positive. The moves for Left are to
o n  J

I o  Iand T, which equal (0) and (210) by some of our theorems. The moves

for Right are to |(0 | —2) and Q  (£| —2). So we have the equality

; ~ > { 0 , 2 | 0 | | 0 | - 2 , A | - 2 }  = G,say.

The option ^| — 2 is plainly dominated by 0| — 2, and since G >  0, the Left 
option 2 10 is reversible to 0, and can be replaced by the (non-existent) 0L. 
So we have G =  0 1| 0 1 — 2, which, since we see it is strictly positive, is in 
simplest form.
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For reasons that will only appear later, this game is called + 2 (pronounced 
“tiny-two”). For any positive number x, we have a similar game “tiny-x”

“tiny-x” =  0 1| 0 1 - x  =  + x.

For each positive x, +x is a positive infinitesimal, and indeed a small game 
in the sense of Chapter 9, since it is strictly smaller than all positive numbers. 
But other calculations show that for strictly positive x these games are 
smaller than all positive all small games, such as f. As a matter of notation, 
we abbreviate sums involving such games in a natural way—thus 5 + 2 means 
5 +  + 2, and 5 —2 means 5 — + 2.

It is possible to define powers f* of |  for positive x >  Iso  that whenever 
x > y, then f* is infinitesimal compared to f ,  and all these powers are all 
small We have thus a rough-and-ready scale of infinitesimals:

Firstly, infinitesimal numbers, like 1/tu, l/e0, etc.
Next, the all small games, such as f, | J, etc.
Finally, the games like + 1, +  2, etc.

We say finally because indeed the games + a really tend to zero as a tends to 
On, any strictly positive game being bigger than some +t. (Any short positive 
game is greater than some +„.) But we should also add that, zerothly, there 
are some infinitesimal games that are strictly greater than all infinitesimal 
numbers! These remarks are very much amplified in Chapter 16.

A DOMINO DICTIONARY

We now tabulate values for all domino positions with at most 6 nodes 
(Fig. 22). The game of dominoes has a behaviour in some ways intermediate 
between the two games COL and SNORT of this chapter, with typical 
values not so restricted as those of COL nor so chaotic as those of SNORT. 
Many of these are derivable from each other by simple rules. Often it ob
viously does not affect play if we make a configuration bend in the opposite

direction to the given one—for instance are also a number

of rules telling us that on certain occasions edges may be deleted without 
affecting values, as described earlier in this chapter. Here is a brief catalogue 
of explosive edges:

The ones indicated by lightning bolts in:
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0
(1 node)

i1 l*
(3 nodes) I *  b  k , .  P  A

1

(2 nodes)

t 2 01 LJ h  C° %  4t lit
; 2 |r l» 4?

ii [r t̂°
P  i !

j.,0

F
j,|, j, ,.  q , .  * .

F T*
±in i l

r 2)0 r i  t ljo f * 2 \ ~ \

h  r  t  h  r a
(4 nodes) (5 nodes) (6 nodes)

F ig . 22.

and edges joining any one of the configurations below to any one of the 
indicated surrounding nodes:

, L r  ' . L : b :  : p :  . l  . l

+  - 1! -  . L  ±  i j :
• • <

• • • • i i

nn i
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Some fairly large domino positions we have analysed are:

::: f c  U  n h  b n
2 ± 1* i*|o ± i |

ffi ffi EEB
±1 1JI-1 -1*

2 | - i  2 | - i

1

We have chosen these as being of shapes fairly likely to arise in actual play.
Goran Andersson’s Domino game is called “Domineering” in Winning Ways, where 

larger dictionaries can be found. The necessary evaluations have been greatly eased 
by David Wolfe’s “combinatorial games toolkit” for partizan game theory which 
runs on Linux computers. You can obtain it from

http://www.gustavus.edu/~wolfe/papers-games/

or by sending e-mail to wolfe@gustavus.edu.

http://www.gustavus.edu/~wolfe/papers-games/
mailto:wolfe@gustavus.edu


CHAPTER 11

Impartial Games and the Game of Nim

c o rp o ra l nym: /  have operations in my head, which be 
humours o f revenge.

William Shakespeare. The Merry Wives o f Windsor

This chapter is intended to show how the Sprague-Grundy theory of 
impartial games fits into our more general ideas. The theory will itself be 
developed inside the chapter.

Definition. The game G is impartial if and only if for every position 
P = {L | R] of G, we have L = R (as sets).

In other words, G is impartial only if every option of G is also impartial, 
and the collection of Left options coincides with the collection of Right ones.

Recall the convention {A, B,C, . . . }  =  {A, B, C, . . .  I A, B, C, ...}. In view 
of this convention, it is natural to use G', rather than G*~ or G*, for the typical 
option of G, and to write G' e G to mean that G' is an option of G. So we identify 
each game with the set of all its options.

THE GAME OF NIM

This game is played with a number of heaps (rf matchsticks. The legal 
move is to strictly decrease the number of matchsticks in any heap (and 
throw away the removed sticks). A player unable to move because no sticks 
remain is the loser.

It is obvious that Nim is the disjunctive sum (rf its heaps. So we can analyse 
it by writing *n for the value of a heap size n. Inductively, these impartial 
numbers, or Nim-numbers are defined by

*n =  {*0, *1, . . . ,  *(n -  1)} = {**>}„<„.

We note in particular the values

*0 =  { | } =  0, *1 =  (0 1 0} = *, and
122
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*2 = {0, * 10, *}.

(We shall continue to use the abbreviations 0 and *.)
Now without assuming the general theory of earlier chapters, we shall 

develop the Sprague-Grundy theory in an analogous but easier way. The 
idea is perhaps best illustrated by reference to another game.

THE SILVER DOLLAR GAME, WITHOUT THE DOLLAR

This game is played on a semi-infinite strip of squares, with a finite number 
of coins, no one of which is a Silver Dollar. Each coin is placed on a separate 
square, and the legal move is to move some coin leftwards (i.e. towards the 
finite end of the strip), not passing over any other coin, onto any unoccupied 
square. The game ends when some player has no legal move, because the 
coins are in a traffic jam at the left end of the strip.

F ig . 23.

Figure 23 illustrates a typical position and a typical legal move. (Of course 
all games are impartial in this Chapter, so the move is legal for either player.) 
Now we assert that this game is merely a disguised and slightly generalised 
form of Nim.

Here is the disguise revealed. Starting from the rightmost coin, count the 
numbers of squares in alternate spaces between the coins, and let these 
numbers be the sizes of Nim-heaps. So the illustrated position corresponds 
to the Nim-position 3, 5,4, 2,0.

Now we assert that despite certain differences, which are somewhat startling, 
this game really does behave like Nim. Notice first that every move in the 
coin game affects just one of our numbers, just as every move in Nim affects 
just one of the heaps. Observe also that there are moves in the coin game which 
decrease any one of the numbers by an desired extent. So the only apparent 
difference is that in the coin game there are sometimes moves which increase 
one of the numbers—for instance the indicated move would increase 2 to 5.

However, these increases are not needed by the winning player, and they 
are of no avail to his opponent For if I am winning, and you increase 2 to 5 
(say), then I can plainly respond by simply decreasing 5 to 2 again. In the 
game above, I shall simply follow your move by moving the coin just right 
of yours a corresponding three places.

The argument is perfectly general and proves the following theorem.
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T heorem  70. Let G be any game played with a finite collection of numbers 
(from 0 , 1,2 ,3 ,...) in the following way. Each move affects just one number, 
and strictly changes that number. Any decrease of a number is always obtain
able by a legal move, but some increases may also be possible. However, the 
rules of the game are such as to insure that it always terminates. Then the 
outcome of any position in G is the same as that o f the corresponding position 
in Nim.

Proof. The player who has the winning strategy in Nim need not make use 
of the new moves. If his opponent does, he can always move so as to restore 
the status quo, and the rules ensure that this brings us nearer to the end of the 
game.

In the terminology of Chapter 10, the increasing moves are reversible. 
This result immediately gives us Grundy's theorem;

T he o r e m  71. Each short impartial game G is equivalent in play to some 
Nim-heap.

Proof. Suppose that this is true of all the options A, B, C, . . .  of G, so that 
these positions are equivalent to Nim-heaps of sizes a ,b ,c ,.. . ,  say. Now let n 
be the least number (from 0 ,1 ,2 ,3 ,...)  which does not appear among the
numbers a ,b ,c , This number is the mex (minimal excludent) of a ,b ,c ,__
We assert that G is essentially a Nim-heap of size n. For certainly all the 
numbers 0 ,1 , . . .  which are less than n must appear among the numbers 
a, b, c , . . . ,  so that any decrease of n is obtainable by some legal move. Perhaps 
some increases are possible (if one of a, b, c, . . .  exceeds n \ but it is certainly 
not possible to move to n itself. So in the sense of Theorem 70, G behaves 
like a Nim-heap of size n.

Note. This proves that the value of any impartial short game is one of the
impartial numbers 0, *, *2, *3, A purely formal inductive proof could also
be given, and indeed the theorem follows almost instantly from Theorem 69.

INFINITE NIM

We can generalise Nim by allowing the sizes of the heaps to be arbitrary 
ordinals a, the legal move being to replaoe any a by a strictly smaller ordinal f .  
There are therefore impartial numbers for all ordinals, defined by

** =

Theorem 71 generalises to show that every impartial game is equivalent to
some *a.

In these theorems we have for clarity used the word equivalent where in
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most parts of the book we should simply write equal. We repeat our conclu
sions once again:

If the options of G are equal in value to certain impartial numbers 
*a, *b, *c, ... then provided G itself is impartial, it is equal to the impartial 
(ordinal) number *n, where n is the least number not appearing among the 
numbers a, b, c, .... The number n is usually called the Grundy number of G. 
Our treatment is different from that of Grundy, and we must point out that 
Sprague had earlier discovered the theory independently of Grundy, and in a 
still different way.

Now the benefit of this approach is that we see that the game of Nim itself 
must have a solution of a certain kind, even before we can see what the exact 
details are. For since the disjunctive sum

*a + *b

is itself an impartial game, it must have a Grundy number, n say, where n is 
some function of a and b, so that we shall have

*a + *b = *n.

The theory of Nim will follow as soon as we have computed exactly what 
function n is of a and b.

This we can do inductively if we like, using the definition of the disjunctive 
sum. This tells us that *a +  *b = *n, where n is the least number not the 
Grundy number of any of the sums

*a' +  *b, *a +  *b' (a' < a, b' < b).

From this it is easy to compute *a +  *b recursively, and in fact of course 
we have already done so in Chapter 6, where the reader will find a table for 
all a <  16, b < 16.

Since when playing games it is handy to have Nim-sums at one’s fingertips, 
we display all cases with numbers less than 8 in Fig. 24. The lines of this 
diagram represent triples of numbers any two of which Nim-add to the third.

4
( 1. 2, 3)
( 1, 4 . 5)

j ^ ; 2 and(°.n,n).
(2. 5. 7)
(3. 4. 7)
(3, 5, 6)

Fig. 24. Some Nim-triplets.
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So for instance the circular “line” tells us that 3 +  2 5 = 6, 3 +  2 6 =  5, 
5 +  2 6 = 3. (We use +  2 for the Nim sum, and read 3 +  2 5 as “three Nim 
five”.) Many readers will find themselves able to memorise these Nim-triplets 
without the diagram—we give a list beside i t  In general we have the triplets 
(1,2n, 2n +  1), (7, n, 7 — n)„<7, and we can replace 7 in the latter by any 
number 2* -  1. This, together with the special triplet (3,5,6), and occasionally 
(8, n, 8 +  n)<<8, is all one should ever need.

To find a good move from a general Nim-position, the first step is to 
compute its Nim-sum. If this is zero, the position is a second player win, so 
your best hope is to leave the position as complicated as possible so that your 
opponent will fail to analyse i t  But if the Nim-sum is non-zero, we can Nim- 
add the sum to at least one of the heap-sizes in such a way as to cause a de
crease, and this determines a legal move to a position of Nim-sum zero.

So for instance in the position 3, 4, 8,9 the Nim-sum is

3 + 2 4 +  2 8 +  2 9 = 3 +  24 + 2 l =  3 + 2 5 =  6,

which is non-zero. Nim-adding 6 to the numbers 3,4, 8,9 we find 5,2,14, 15 
respectively, and so the only good move is to decrease 4 to 2  In practical play 
one should try to visualise the matchsticks in each heap partitioned into 
distinct parts whose sizes are powers of 2, and then a good move is often 
obvious. For instance in Fig. 25 when we partitition the heaps (mentally) 
as indicated, it is obvious that reducing the second heap from 4 to 2 will 
“cure” the position.

F ig . 25. A move made plain.

One should also get into the habit of realising that once one has evaluated 
the Nim-sum of a position, one has really proved that it is equivalent to a 
Nim-heap of a certain size. In particular, for instance, if some sub-position 
has value zero, it can be neglected until such time as our opponent moves in it, 
when we respond by reversing it to zero again. But more generally, any
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sub-position of value 3, say, may and should be thought of as a disguised 
Nim-heap of three sticks.

THE GAME OF KAYLES

This was introduced by Dudeney and Loyd. It is played by skilful players 
with a number of rows of ninepins. See Fig. 26.

Fig. 26. The Kayles position K A +  K , +  K 2 +  K s.

We suppose the players are so skilful that they can throw a ball so as to 
knock down any single ninepin or any two adjacent ones, but that it is 
physically impossible to knock down pins separated by any larger distance. 
The last mover wins.

Let us write K n for the value of a row of n pins in Kayles. Plainly any Kayles 
position is a disjunctive sum of its rows. The legal moves from Kn are to 
sums Ka +  where a and b are restricted only by the conditions a >  0, 
b ^  0, a + b = n — l o r n  — 2  

So we have

K 0 = { } =  0 (=  *0)

K 1 = {K0} = {0} =  . 1 ( = . )

K2 = {K0,K 1} = { 0,*1} = *2
K 3 =  {Kv  K 2, K, +  K J  =  {*1, *2, *1 +  *1} =  {*1, *2,0} = *3 

K a = {K2, K , +  K t, K 3, K 2 + K 1} = {*2,0, *3, *2 +  *1}

= {*2,0, *3} =  *1.

Note that K A is not given by the next larger number than 2,0, 3, but the least 
absent number, namely 1. Continuing, we find

K s = {K 3, K 2 +  K „ JC4, K 3 + K v  K 2 + X 2} =  {*3, *3, *1, *2, *0} = *4, 
and then K 6 = *3, K y =  *2, K 8 =  *1.

In the standard language, the Grundy numbers of the positions

K lt K 2, K 3, K a, K s, K 6, K 7, K 8
are

1, 2, 3, 1, 4, 3, 2, 1,
respectively.
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We believe that the complete K-series was first calculated by Richard Guy, 
who discovered the astonishing fact that Km is a periodic function of n with 
period 12, for all n > 72 (The same fart has been independently discovered 
by a number of other people.) We tabulate the -series from n = 0 in rows 
of 12 to illuminate the periodicity:
0 + 1 + 2 + 3 + 1 - 4 + 3 - 2 - 1 -  4 + 2+ 6+
4 - 1 + 2 + 7 - 1 - 4 + 3 - 2 - 1 -  4 + 6 - 7 -
4 - 1 + 2 + 8 + 5 + 4+ 7 + 2 - 1 -  8 + 6 - 7 -
4 - 1 + 2 + 3 + 1 - 4+ 7 + 2 - 1 -  8 + 2 + 7 -
4 - 1 + 2 + 8 + 1 - 4 + 7 + 2 - 1 -  4 + 2 + 7 -
4 - 1 + 2 + 8 + 1 - 4 + 7 + 2 - 1 -  8 + 6 - 7 -
4 - 1 + 2 + 8 + 1 - 4+ 7 + 2 - 1 -  8 + 2 + 7 -

Grundy numbers for Kayles, from n = 0 to n = 83

Here the values are to be read straight across the rows, and the last row 
now repeats indefinitely. The signs “ + ” and " are to be ignored for the 
moment.

OTHER IMPARTIAL GAMES

The Grundy numbers for many other games have been shown by Guy, 
G  A. B. Smith, and others, to exhibit similar behaviour. Often there is 
“almost” periodicity present from the very beginning, which later may or 
may not “settle down” into exact periodicity. In other cases there is no real 
evidence of any kind of periodicity, although no octal game has been defi
nitely shown not to be ultimately periodic.

These octal games generalise both Nim (the case -3333...) and Kayles 
(the case -77). In general we have a game ■A1A2A 3. . .  for any sequence of 
“digits” A v A 2, A v . . .  >  0. If the digit Ak has the binary expansion 
2" +  2* +  . . . ,  this means that it is legal to remove just k objects from any 
heap and then partition the remainder of that heap into a number a or h o r .. .  
(only) of non-empty heaps. Such moves, as k varies, are the only legal moves.

Thus, since 3 = 2 * +  2°, in the game -333...,  it is permissible to remove 
any positive number k of counters from a heap, leaving the remaining ones 
(if any) to form either 1 heap or 0 heaps. This game is therefore Nim. In the 
case -77, we may remove only 1 or 2 objects from a “heap”, leaving the 
remaining ones forming 0 or 1 or 2 heaps (since 7 =  2° +  21 +  22). So we 
might as well think of the objects as arranged in a line and remove 1 or 2 
adjacent ones, as in Kayles.

As a more general example, we take *156. Thinking of the heaps as lines 
again, we see that (since 1 =  2°) we can remove a single object if and only if 
it forms an entire line, two adjacent objects if and only if they form an entire 
line or are strictly inside a line (since 5 =  2° +  22), and three adjacent objects
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if and only if they do not form an entire line (since 6 =  22 +  21). We consider 
this example because J. C. Kenyon has found that its Grundy numbers are 
periodic with period 349 from 3479 onwards!

The octal games are those games A lA2 . . .  in which each At <  8, and they 
form a fairly natural class since they have easy interpretations in terms of 
lines of objects. But digits 5* 8 are meaningful, and have also been considered. 
Another extension is to allow certain digits . . .A  _1A0 before the point, pro
vided suitable conditions arc satisfied. Thus 4-33 denotes the game in which 
any heap may be split into two non-empty parts (22 =  4\  or reduced by 1 or 
2 objects.

We shall not discuss these games in detail—for a more comprehensive treat
ment see Winning Ways and the references given therein. But we cannot resist 
noting Guy’s beautiful discovery that the game ■72'" (m = 2") has for its Grundy 
number sequence the sequence obtained from the ordinary Kayles sequence by 
replacing each table entry x  + by the sequence

mx, mx + 1,..., mx + m -  1,

and each entry x -  by the same sequence reversed. Nor can we resist pointing out 
that Berlekamp’s remarkable theory of the schoolboy game of Dots and Boxes 
shows that one must understand the theory of Kayles to become an expert at this 
game. See Winning Ways, and Berlekamp’s book The Dots-and-Boxes Game: So
phisticated Child’s Play.

The Grundy number series for Grundy’s own game (split any heap into two 
non-empty heaps of distinct sizes) has now been analysed for n < 10s without 
discerning any permanent periodicity. There is a most remarkable initial 
tendency towards the period three, but the permanence of this or any of the 
other “almost periods” seems doubtful. We shall discuss Grundy’s game 
again in Chapter 12, where we shall disprove a conjecture about the misere 
form of the game.

For games in which the typical position depends on just one parameter n, 
the Grundy theory is essentially complete—all we need to play the game is a
table of (or formula for) the Grundy number of the nth positioa We give some
examples not exactly of the octal type:

PRIM (remove from a heap of size n any number prime to n—invented by 
Alan Tritter)

n =  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...

G-series: 0 1 2 1 3 1 4 1 2  1 5 1 6 1 2 . . .

In general G(n) is k if the least prime divisor of n is the kth prime. If we
allow the removal of 1 from 1, then the G-values 0 and 1 are interchanged.
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DIM (remove a divisor of n from a heap of size n)
n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G-series: 0 1 2 1 3 1 2 1 4 1  2 1 3 1 2 1. . .

In general G(n) = k if 2k~1 exactly divides n  If we disallow the removal of
n from n the G-values are decreased by 1.

More complicated games are tackled as usual by building a dictionary 
of small positions and looking for some general patterns. Even when, as 
usual, no complete theory emerges, we usually find enough to enable us to 
play the game against intelligent opponents ignorant of the Grundy theory 
and win almost every time. We recommend the reader who wants to try his 
hand to tackle the game of dominoes on a Chessboard, when we allow each 
player to put his dominoes in either the horizontal or vertical orientations.

The game of Hackenbush unrestrained should also be mentioned here— 
it is played exactly like the variety of Hackenbush described in Chapter 8, 
except that there is just one kind of edge, and each edge may be chopped by 
either player. We give a complete discussion in Chapter 13, since the theory 
really involves the animating Junctions discussed there, but some readers will 
prefer to try things for themselves. (The theory is considerably easier for 
trees than for general pictures, although the answers in the general case are 
almost as easy to guess.)

THE SILVER DOLLAR GAME, WITH THE DOLLAR

This game is played just like the corresponding game without the Dollar, 
except that just one of the coins we use is a Silver Dollar, and the leftmost 
square is replaced by a moneybag, capable of holding any number of coins. 
So the leftmost coin on any square other than the moneybag may if we like 
be put into the moneybag as a move. When the Dollar is in the bag, the game 
ends, and the person who did not put the Dollar into the bag pockets the bag 
and goes home.

The theory is exactly the same as in the simpler game, except that the 
moneybag counts as an empty square if the next coin to the right of it is 
anything other than the Silver Dollar, but a full square when it is the Dollar. 
(Because we don’t want to put the Dollar into the bag we prefer to think of 
it as full when the Dollar is the nearest coin to i t !) Since in Nim we are never 
forced to make any heap have size -1 ,  we shall never be forced to put the 
Dollar in the bag, if we can win the Nim game.

If instead the person who puts the Dollar into the bag may pocket the 
bag as part of the same move, the coin we don’t want to put into the bag 
becomes the one to the left of the Dollar. So in this case we count the bag as
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full only when it is this coin which is next to the right of i t  The theory is 
otherwise unaltered I believe the Silver Dollar game is due to N. G. de Bruijn.

NORTHCOTT’S GAME

This game is played with the pawns on a Chessboard with positions like 
those of Fig. 27 in which each row contains one black and one white pawn. 
The pawns may move freely (many squares at a time) along the rows, but 
may not jump over each other. A player loses when unable to move.

F ig . 27.

Despite the potential infinitude of the game, it is really Nim, played on the 
numbers of spaces between opposing pawns. Thus the position of Fig. 27 
has Grundy number 4 +  0 +  0 +  3 4 - 1 + 2 + 1 + 2  = 7, the addition 
being Nim-additioa The winning player should always “close in” on his 
opponent, whose attempts to retreat will then be unavailing.

Another variant of Nim, which some will find more appealing than the 
original, is played with spots on a piece of paper. The Rims move is to draw a 
closed loop passing through any positive number of spots but not meeting

F ig . 28. A position in Rims (or in Rayles).

any other loop. So Fig. 28 shows the Nim-position with heaps of sizes 3,4,0,1. 
We obtain Rayles if we insist that each loop pass through just one or two 
spots (a reformulation of Kayles). The other octal games can also be refor
mulated in this way.
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DIMINISHING RECTANGLES

This game is played with a number of rectangular cards placed on a table, 
and a large bin containing an indefinitely large stock of such cards. Each 
card measures an integral number of inches in each direction. The move is 
rather curious—we take an a x b card from the table and an A x B card 
from the bin, and cut the A x B card once in each direction so as to remove 
an a x b card from one corner, and three other cards of sizes a' x b, a x b', 
and a' x b\ say. Then provided that a' < a and b' < b, we may replace the 
a x b card originally on the table by these three new cards, throwing the 
two a x b cards into the bin. See Fig. 29.

In other words we may replace a table card by the three pieces left when 
it is cut from a bin card, provided that these are all strictly smaller than the 
table card. The game ends as usual when the table is empty, so that no player 
has a legal move. What is the strategy?

Of course this curious game has been designed to make use of the curious 
theory developed in Chapter 6. Each rectangle has an area defined as the 
product of the lengths of its edges in the sense of Chapter 6, and the cards 
on the table have then a total area obtained by summing these areas in the 
sense of that Chapter (and this). The correct moves are to positions of total area 
zero.

So if the cards on the table are of sizes 1 x 1, 2 x 2, 4 x 4, 8 x 8 a good 
move is to replace the 8 x 8 card by three cards of sizes 8 x 7, 7 x 8, 7 x 7, 
whose total area is 4, which is also the total area l 2 +  22 +  42 = 1 +  3 +  6 
of the remaining cards.

We can generalise this game in the obvious way to cards whose edges have 
arbitrary ordinal lengths, and which have arbitrarily many dimensions. 
In the generalised game, for what n is the position 2 x l x l + n x n x «  
a win for the second player?

F ig . 29.

THE DELIAN PROBLEM RESOLVED
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This question of course reduces to solving the equation n3 =  2 in the 
sense of Chapter 6, or in other words to the Nim-duplication of the cube. 
The answer is contained in that Chapter, the simplest value of n being the 
least infinite ordinal a>. See Fig. 30.

The solution sketched in this figure is not unique, since n = 2(0 and 3(0 are also 
solutions, 2 and 3 being the non-trivial cube roots of 1.

Distinctly more natural games involving Nim-multiplication are the coin-turn
ing games of H. W. Lenstra, Jr., described in Chapter 14 of Winning Ways.

THE SMITH THEORY FOR GAMES WITH INFINITE PLAY'

C. A. B. Smith has extended the Grundy-Sprague theory to cover games 
in which the play need not terminate (as in Northcott’s game above, 
when played badly). If the play continues forever, we call the game a draw. 
We give Smith’s theory here, with an informal, though perfectly rigorous, 
proof.

We draw the graph of the game, which may be finite or infinite, having a 
node for each position and a direct edge from P to Q when it is legal to move 
from P to Q. (Of course, we are considering only impartial games.) We are 
allowed to mark a position P in this graph with the number n (for infinite 
graphs, n may be an arbitrary ordinal) in the following circumstances. 
Firstly, n must be the mex of all the numbers that already appear as marks of 
any of the options of P. Secondly, each of the positions immediately follow
ing P which has not been marked with some number less than n must already 
have an option marked n. We continue in this way until it is impossible 
to mark any further node with any ordinal number, and then attach the 
symbol oo to any remaining nodes (which we call unmarked). The value of 
a position marked n is then n, while the value of an unmarked position is the 
symbol oo followed by the values of all marked options as subscripts.

F ig . 30. Two cuboids of the same volume!
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A 1
/ X t  X

B ^ C  2 0
/ X / X / \ s \D-*-E-*r F 0 1 2

/  X /  X /  X /  X /  X /  X
G -< -//-> -1 -&-J I -<r 2 HMSO^OOj

/ X / X / X A / X / X / X
K -* r -  L ~ * r M ~ * - N - < - 0  0 -< r  3  - < - 0 0 j ^ - 0 0 GO

F ig . 31. A game which need not terminate, and its analysis.

Take for instance the graph of Fig. 31 suggested by Aviezri Fraenkel.
The reader will find it easier to understand the marking process if he draws 

the graph of Fig. 31, and follows our argument marking the various nodes in 
succession.

The node C has no exit move, and so we can label it 0. (If there had been 
no such node, then every node would be unmarked, and have value oo.) 
Then D can be marked 0, because although B and £  are as yet unmarked, 
they both have C as an option. Now G can be marked 1, since its only option 
is D, and K  can be marked 0, since its only option is G.

At this point, the only node we can mark is £, which may and must be 
marked 1, since its only marked option is C (marked OX and from its unmarked 
option H we can indeed get to G, marked 1. Now all Bs options are marked 
(with marks 0 and IX so £  is marked 2, and similarly A is marked 1, since its 
only options are marked 0 and 2, and F is marked 2

Now the only node we can mark is H, which has options already marked 
0 and 1, and an additional option /, from which we can get to F, already 
marked 2  So H is marked 2  and then L has only marked options, with 
marks 0, 1 ,2  and so can be marked 3. With this, we obtain the marks given 
in the right hand part of the Figure.

The nodes /, J, M, N, O are unmarked, for since the adjacent nodes do 
not include a zero mark, the only plausible mark is 0. But each of I, J, M, N, O 
has another of /, J, M, N, 0  as an option, and from this option we cannot 
get to any node already marked 0. So we attach the symbol oo to each of these 
nodes, with subscripts as appropriate. Thus since from M  we can move to 
H  and L, with marks 2 and 3, we have written oo23 for Af.

Now we assert that in play, a position marked n behaves like the Nim-heap 
♦n, and so in particular, is a second player win if and only if n =  0, and 
otherwise a first player win. Also, an unmarked position is a first player win 
if and only if it has some subscript 0, and is otherwise a draw.

We further assert that the disjunctive sum P +  Q of positions P and Q 
will be marked if and only if P and Q are marked, and that then its mark will 
be the Nim-sum of those of P and Q. We explain these assertions after 
considering an example.
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TRAFFIC JAMS
Figure 31 may be considered as a map of a fictitious country, with towns 

whose names run from Aberystwyth to Oswestry, and one-way motorways 
between them. Four vehicles are placed initially at Aberystwyth, Dolgellau, 
Ffestiniog, and Merioneth, and either player, when it is his turn to move, 
may move any of these vehicles from one town to any adjacent one along a 
motorway (in the right direction). Each town is big enough to accommodate 
all four vehicles at once, should the need arise. When all the vehicles are 
stranded at Conway (from which there is no escape), the player about to 
move loses, for he is unable to do so. What should the first player do?

He should observe first that the game is a disjunctive sum of four smaller 
games, one for each vehicle, so that he should make some move to a sum of 
value 0, if possible. (Note that 0 is the only second player win, and that after 
making a move one is the second player.) Now the vehicles at A, D, F have 
finite marks, but that at M  has value oo, and so must be moved if the sum is 
to be marked, and to a town marked 3 if we are to move to a 0 position, 
since 3 =  0 +  2 l + 2 2. We conclude that the unique winning move here is 
the one in which the vehicle which was originally at Merioneth is moved to 
Llanfairpwllgwyngyllgogerychwymdrobwllllantysiliogogogoch.

(How long would it take a professional Chess player to see this?)
Of course, any position with a vehicle at Novosibirsk is a draw.
To see that the theory works, we first observe that the positions we mark 

n are really Nim-heaps with reversible moves, for from such a position we 
can certainly get to positions with any desired marks less than n, and from 
all other options we can move to “simpler” positions marked n. (This is 
really a proof by induction on the order in which we mark the positions.)

So by the theory of generalised forms of Nim, the sum of two such positions 
with marks a and b is another, with mark a +  2 b. So the only assertion we 
need prove is that if P +  Q is marked, so are P and Q. Take an earliest marked 
position P + Q for which this fails, and let a be the mex of the marks at 
options of P, and b the corresponding mex for Q. We shall show that in fact 
P is marked a and Q is marked b.

If P, say, were unmarked, then some option F  of P would also be unmarked. 
Then F  +  Q is unmarked (by induction), and so since P + Q is marked, 
F  +  Q must have some option P" +  Q or F  +  Q  which is marked with the 
same mark as P + Q. The latter case is impossible by induction since F  
is unmarked, and so P" +  Q must be marked, so that P" and Q must both 
be marked, by induction. The mark of Q can only be b, and, since F ' + Q 
and P + Q have the same mark, the mark of P" can only be a.

We have shown that every F  which is unmarked must have an option P" 
marked a, and it follows that P should have been marked a, proving our 
assertion.



CHAPTER 12

How to Lose when you Must
(The misire theory of disjunctive sums)

In the pleasant orchard closes,
'God bless all our gains', say we;
But 'May God bless all our losses’
Better suits with our degree.

Elizabeth Barrett Browning, "The Lost Bower"

This chapter, and the two that follow it, are a digression from our main 
theme to consider various other generalisations of the theory of impartial 
games. The reader who does not wish to have his train of thought disturbed 
should pass at once to Chapter 15.

MISERE PLAY OF DISJUNCTIVE SUMS

We have seen that when the last player able to move is defined to be the 
winner (the normal play rule), the theory of disjunctive sums is really very 
simple. Each component behaves like a Nim-heap of a certain size (its 
Grundy number), and we can simply imagine ourselves playing Nim. It is 
remarkable that when we simply change the rules by declaring that the last 
player able to move is the loser (the misire play rule), the situation changes 
completely, and the whole theory becomes much more complicated. Never
theless, there is a lot we can say, and in many cases we are able to give a 
complete analysis of some quite complicated games.

MISERE NIM

The strategy here is due to Bouton himself (indeed, if anything, misire 
Nim is more commonly played than normal Nim):

Play as you would in normal Nim, making the Nim-sum of the heap-sizes
zero, unless your move would leave only heaps of size one, (discounting

136
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empty heaps). In this case, move so as to leave either one more or one fewer 
one-heaps than the normal play move.

In other words a position with some heap of size two or more is a second 
player win if and only if its Nim-sum is zero, but one in which all the heaps 
are zero or one is a second player win only if its Nim-sum is one (i.e. it has 
an odd number of one-heaps).

There is another way to describe this strategy which will be useful later— 
every Nim-position has a Nim-type, which is one of the symbols 0,1,0°, l 1,
22, 33,  Given the Nim-types of two positions, we can determine the
Nim-type of their sum by using the rules 0 +  T =  T  (for any type), 1 +  1 = 0 ,  
l +  t' =  u"(u = l +  2t),a<, +  b,’ =  cc (c = a +  2b) which are perhaps easiest 
seen from the following table

0  1 0 °  1 ‘ 22 33 4* 5s . . .

0 0 1 0 ° 1* 2 2 3 3 A* S3
1 1 0 1‘ 0° 33 2 2 5 3 A*
0° 0° l 1 0 ° l 1 2 2 3 3 A* 5 s
l 1 l 1 0° l 1 0 ° 3 3 2 2 5 s 4*
2* 2 2 3 3 2 2 33 0 ° I 1 6 s I 1
3 3 3 3 2 2 3 3 2 2 1* 0 ° 7 1 6 6
A* A* 5 J 4* 5 3 6* V 0 ° 1 '
5 3 5 s 4* 5* 4* 7 7 6* l 1 0 °

In other words, the types <f combine by ordinary Nim-addition, but there 
are two additional types 0 and 1. A single Nim-position has type rf if its 
Nim-sum is n, unless all its heaps have sizes 0 or 1, when its type is 0 or 1 
according as there are an even or odd number of l ’s. Finally, the type of a 
position determines its outcome—in normal Nim the wins for the second 
player are 0 and 0° (and so we need not distinguish between these), but in 
misere Nim they are 1 and 0° (so that we must).

There are many other games for which the same system of types works, 
and many people have guessed that the theory of misere Nim is a prototype 
for that of misere sums in general. The prevailing belief seems to be that a 
good strategy is “play as in normal play until the game is nearly over, and 
then make a sensible move”. But Grundy showed that in general the situation 
can be much more complicated than this allows.

REVERSIBLE MOVES

We use the notation of the previous chapter, so that {A, B, C , . . . }  = G 
denotes a game G from which either player can move to any one of A, B, C ,.... 
Grundy discovered one way of simplifying games, which turns out to be the
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only way, namely by pruning reversible moves. We prefer to describe first 
the opposite notion, where we make a game more complicated (without any 
real change) by adding new reversible moves.

Let G = {A, B, C, . . . } .  Then we say that the game

H =  { A , B , C , . . . , X , Y , Z , . . . }

has been obtained from G by adding reversible moves if there are moves from 
each of the new positions X, Y, Z , . . .  back to G, provided that, if G is empty, 
one of X, Y, Z , . . .  is a second player win.

The last clause is known as the proviso. Then Grundy’s principle is:

The outcome of a sum of games is not affected by replacing G by H, (or vice
versa), if H can be obtained from G by adding reversible moves, subject to
the proviso.

For supposing we have a strategy for winning such a sum, with G being 
one of the summands. Play “the same” strategy when G is replaced by H, 
never yourself making use of the new moves. If your opponent does so, 
moving from H to X, say, then you should “reverse” the position to G, 
provided H is not the only non-zero component remaining, when you should 
instead move to the second player win position which is accessible from H.

Observe that, with the exception corresponding to the proviso, this is the 
same argument as in normal play. The extra complication arises because of 
the unnatural treatment of 0, which is now counted as a win for the first player 
even though he has no good move. Unfortunately, the complications so 
produced persist indefinitely, and make the mis6re play theory much more 
complicated than the normal one.

Suppose H = {A, B, C, . . . ,  X, Y, Z , . . .} has been obtained by adding 
reversible options to G =  {A, B,C, . . . }.  Then when H occurs in some sum 
we should naturally like to replace it by the simpler game G. Of course we 
will normally be given only H, and have to find the simpler game G for 
ourselves. How do we do this?

Here are two observations which make this fairly easy:

(i) G must be obtained by deleting certain options of H.
(ii) G must itself be an option of any of the deleted options of H, and so G
must itself be a second option of H, if we can delete any option at all.
On the other hand, if we obey (i) and (ii), the deletion is permissible, except 

that we can only delete all the options of H  (making G =  0) if one of them is 
a second player win.

It turns out that if we make all possible such deletions at all positions of 
some game G, we obtain the unique simplest possible form of G—in other 
words, no further simplifications are possible. We shall prove this later. It
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was formerly known to some people as Grundy's conjecture, although 
Professor Smith informs me that in fact Grundy conjectured no such thing, 
and firmly believed the opposite!

THE BEHAVIOUR OF NIM-HEAPS

We first examine games whose options are all Nim-heaps. As usual, these 
are defined by

0 =  {}, 1 ={0},2 = {0,1}, . . . ,* =  { 0 , l , . . . , n  — 1},

and indeed for all ordinals a by a. =  {/? <  a}. In this chapter, we shall omit 
the prefixed stars.

T h e o r e m  7 2  A game G whose options are all Nim-heaps reduces to a 
Nim-heap itself unless all the options have size at least 2  When it reduces, it is 
to the least Nim-heap not appearing as an option.

Proof. If the game reduces, it must be to some second option of itself, and 
so to some Nim-heap, which must obviously be the least Nim-heap not an 
option. If this is not 0, the reduction does in fact take place, and if it is 0, it 
will still take place if some option was 1 (a second player win).

So for example, we have {1} = 0 , {0,1,3,5} = 2  {1,2,3} = 0 , but {2} 
does not reduce to a Nim-heap, at least by our rule. In fact {2} is a second 
player win, and so would have to reduce to 1, if to any Nim-heap, but this is 
impossible, since {2} +  {2} is also a second player win, whereas 1 +  1 is not.

A fairly immediate corollary of Theorem 72 which we state without proof,
is:

I f  n is a Nim-heap, so is n +  1. Its size is given by the normal Nim-addition
rule.

Thus 2 +  1 = 3 ,  3 +  1 =  2 1  +  1 = 0 ,  etc. On the other hand, the game 
2 +  2 =  {0 +  2  1 +  2  2 +  0, 2 +  1} = {2,3} (by this rule), which does 
not reduce to a Nim-heap.

We postpone formal proof that the Grundy principle gives all possible 
simplifications until later, and use it now to discuss simplest forms of the 
smallest games. If we made no simplification at all, we should find 1 game 
“bom on day 0”, 2 games bora by day 1,4 games bom by day 2  24 = 16 by 
day 3, 216 = 65536 by day 4, 265536 games bom by day 5, and so on, since 
any subset of the games bom by day n yields a game bom by day n +  1 
(at most).

When we prune reversible moves, we get slightly smaller numbers. Count
ing only games in simplest form, Grundy and Smith showed that there was
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1 game bom by day 0, 2 by day 1, 3 by day 2, 5 by day 3, 22 by day 4, and 
4171780 by day 5. We extend their list one place by remarking that there 
are exactly
2 * 1 7 1 7 8 0  _  2 2 0 9 5 1 0 *  _  J .2 2 0 9 * 3 9 3  _  2 2 0 9 * 0 8 1  _  3 .2 2 0 9 1 5 2 2  _  2 2 0 8 8 9 6 0  

_ 3 _ 2 2 0 8 8 * * 8  _  2 2 0 8 7 9 3 7  _  2 2 0 8 6 9 1 2  _  2 2 0 8 6 6 5 7  _  2 2 0 8 6 * 0 1  _  2 2 0 8 6 1 * 5

 22085888 _  2207923*  21960962 4. 21

games in simplest form bom by day 6. (This number is more than

99 9999999999999999999999999999999999999999999999999999999999999999 %

of 24171780. The number of games in simplest form bom by day 7 is very 
small compared to 2241717*0, but huge compared to 224' 7177*.)

It is not hard to show that for a suitable real number y0 (approximately 
0-149027998351785...) if we define )>„+! =  2’’* then the number of games in 
simplest form bom by day n is the next integer above y„.

The day on which a game is bom tells us how long it can possibly last 
(if it is less than co), so we call it the length of the game. On the next page we 
draw trees for the 22 reduced games of length at most 4. Since an abbreviated 
notation rapidly becomes almost essential, we use ABC. . .  for {A, B ,C , . . . } ,  
except that we use A + for {A} to distinguish this from A itself. The 22 games 
of length at most 4 are

0, 1, 2, 3, 4, 2+, 3+, 32

2++, 2+0, 2+l,  2+2, 2+20, 2+21, 2+210,

2+3, 2+30, 2_31, 2+32, 2+320, 2+321, 2+3210.

THE MISERE GRUNDY VALUE

The normal Grundy number of G can be defined as the unique number n 
for which the disjunctive sum G +  n is a second player win in normal play. 
This number we shall call in this chapter 9 +(G). Similarly, we can define 
the misire Grundy number 9~(G) to be the unique n for which G +  n is a 
second player win in misdre play. It can easily be calculated, and hence shown 
to exist, by the rule:

9 "(0) =  1. Otherwise, Sf "(G) is the least number ( from 0 ,1 ,2 , . . . )  which
is not the Sf"-value of any option of G.

Notice that this is just like the ordinary “mex” rule for computing 9 +, 
except that we have 9 “(0) =  1, 9*(0) =  0.

In the analysis of many games, we need even more information than is
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F ig . 32. The reduced games of length at most 4.

2+3210

provided by either of these values, and so we shall define a more complicated 
symbol that we call the 1f*-value, &*(G\ This is the symbol

9 =  * + (G)

30= 9-{G)
9l =  ST(G + 2) 

lg2 =  «T(G + 2 +  2)
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where in general g„ is the -value of the sum of G with n other games all 
equal to 2.

We already know how to compute the leading entries g and g0. Each 
remaining entry gm+1 is the least number not equal to gn or gn + 2 1, and not 
the gK+j-entry for any option of G. The 5f*-value is apparently an infinitely 
long symbol, but fortunately gH+l =  gK + 2 2 for all sufficiently large n, and 
so we can write 9*(G) =  0*0*1"  to mean that this holds for all n ^  m.

The 3f*-value is more useful than it might seem, since a rather surprising 
amount of information about G can be recovered from it  The value of 
G +  2 is simply ' * ’, where h =  g + 2 2, and the 5f*-values of G +  1 
and G + 3 can be obtained from those of G and G +  2 by simply Nim-adding 
1 to every entry. So the Sf*-value of G determines that of G +  n for all n < 4, 
and it determines the outcome of G +  n for all n, since this is a second player 
win if and only if g0 =  n.

THE MISERE FORM OF GRUNDY’S GAME

We recall that the move in Grundy’s game is to divide any heap into two 
smaller heaps of distinct sizes. Of course in the mis£re form the last player 
to move is the loser. We give a fairly extended analysis of this game, partly 
as an example of the use of 3f*-values, and partly because we can disprove 
a conjecture of Grundy’s that the second player wins are precisely the heaps 
of size divisible by 3. It will turn out that a heap of size 48 is not a second 
player win, but one of size 50 is.

This is quite a good example for the theory, because the positions simplify 
nicely for a surprisingly long time. Here is a short list of simplified forms, with 
their 9* -values:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

G„ = 0 0 0 1 0 2 1 0 2 1 0 2 1 3143.  2 1 3143. 2

n = 18 19 20 21 22

G. _ 40566 3143« 02c 40566 31436
. . .

a =  2221, b = a2a20, c =  6a3, d =  cf>a,22l.

When the reduced form is a Nim-heap, of size n, we have simply written n. 
Otherwise, we give the complete 3f*-value, followed by a small letter which is 
the name of the game, while below the list the structure of this game is described 
in more detail. In the abbreviated names for these games, aH denotes the 
reduced form of a +  n, so for instance 22 denotes the reduced form of 
2 +  2, namely {3,2}, or just 32 in the abbreviated notation. The reader will
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see why we are at such pains to abbreviate the notation if he examines the 
tree for the game b given as Fig. 33!

To see how the table was computed, we take n =  16 and n =  17. In the 
first case, we have at first sight 7 options

+  Gis> G2 +  G14, . . . ,  G? +  G9.

Making use of the previous entries, these become the 7 games 
0 +  1,0 +  2, 1 +  a , 0 +  1, 2 +  2, 1 +  0,0  +  1,

which simplify to 1,2,a ,, 1,22, 1,1, so that G16 = { a , ^ ,  2,1}. Here we 
can delete the option at to obtain the reduced form {22, 2, 1} = a, since a1 
has this as an option. In a similar way, G, 7 has

0 + a ,0 + 1,1 + 2 ,0 + fl, 2 + 1,1 + 2,0 + 0,2 + 1
as options, which simplify (using 2 +  1 =  3) to a, 1,3, a, 3,3,0,3, so that 
G17 =  {a, 3,1,0}, which we can simplify to {1,0} = 2 , since both a and 3 
have 2 as an option.

The game c =  ba3 has options with 3f*-values 4056, 3143, 33, and we 
compute its Sf*-value o2020J°- from the following “sum” :

4036464...
3143131...
3313131...
Q202020...

in which each number is the least number not in any of the corresponding
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places immediately above it, and which is not the previous superscript, or that 
superscript Nim-summed with 1.

So the table is fairly easy to compute, and from the known properties of 
the 3f*-values, we see that it gives the outcome of any position in Grundy’s 
game in which all heap-sizes are at most 22, and at most one is 13, 16, or 18 
or more.

The table in Fig. 34 extends this discussion to n = 50. The first entry for a 
given n is the -value of G„, and later entries give the values of the sums 
G + a, G + b, G +  c, . . . ,  etc.

1:0 1 3 :3 ‘43* 2 5 :3143 3 7 :1 * 1 22 49:1*
2 :0 14:2 2 6 :0 2 3 8 :247 5 0 :0 °43
3:1 15:1 27;4036 3 9 :405®
4 :0 1 6 :3 143" 28: l 1 22j 54 7 1 11 122 

16* 12
40:1* a = 2 221

5 :2 17:2 2 9 :2 2 1 « 4 1 :5 47 b = a 2u20
6:1 18 :4056* 30 :3 ° 0 3 7 * 1 32 42;4056 c = ba3
7 :0 1 9 :3 143* 31 : l 1 22 5 4 3 : 11 d c a b ^  1
8 :2 2 0 :0 2c 32:2* l 43 1614 4 4 :547 e = dcib2ba3
9:1 2J.4036* 3 3 :4 ° 7 3 4 5 :4 032 f  = edb,caj20.

1 0 : 0 2 2 :3 1434 34:1* 22 4 6 :1 ‘
1 1 : 2 2 3 :0 2' 3 5 :2 I i°96 4 7 :547
12:1 2 4 :4 056-f 3 6 :4 ° 7 3 4 8 :4 2

^ • - v a lu e s  o f  su m s  o f  a, b, c :

0 a a + a 0 a a + a 0 a a + a

0 O12 3 143 0 12 o 2 3 43 0 2 0 ° 3 3 0 °
b 4036 ■JOSB7 4056 4 56 7*87 4 56 4 4 V 4 4

b + b O12 3 1* 3 0 12 0 2 343 O2 0 ° 3 3 0 °

a ’s a n d  b's o n ly  w ith  o n e  c tw o  o r  m o re  c ’s.

Fig . 34. A table for Grundy’s game with m isire play.

In the table for sums of a, b, c the values given suffice to show that each 
layer has period 2 in both directions—in other words that in such sums 
we can treat a + a and b + b as 0. But for c, the corresponding pretence is 
c + c + c = c + c.

Jt can actually be shown, although this is not needed for the analysis of 
the 50-heap, that values G„ for 22 ^  n ^  27 can be equated with the appro
priate one of a, b, c provided there is no larger heap. The table is complete 
for the posterity of a 50-heap, and since the outcome depends on the equation 
g 0 =  0, we see that 48 is not a second player win, and that 50 is, disproving 
the aforementioned conjecture of Grundy in two ways.

It would become intolerably tedious to push this sort of analysis much
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further, and I think there is no practicable way of finding the outcome of 
G„ for much larger n.

A similar analysis is given for three other games in Fig. 35. For many octal 
games a complete analysis is possible because the reduced forms are all Nim- 
heaps, and in others because the reduced forms are all tame in the sense defined 
below. This is true, for instance, of the games PRIM and DIM of the last chapter. 
Although it is not true for Kayles, a more subtle complete analysis of that game 
has now been given by Conway and Sibert.

n Kayles ■4 • 6

tvecdii inai.
0 0 0 0 Kayles is the game HI in which
1 1 0 0 one can remove either 1 or 2

2 2 0 1 adjacent counters from a line.
3 3 1 2 In its analysis we have a  = 22321,
4 1 1 0 P = a,a322230,Y=P1paJo23220.
5 414a 2 1 In -4 we can remove a single counter
6 3 0 2 which is not at the end of any row.
7 2 2P 3 3143- and in -6 , any single counter which
8 32 1 1 is not isolated (i.e. not the whole
9 40*r 1 2 of its row). The games a, b, c arising

1 0 0 3143. in their analysis are a = 2 22 1 ,
11 3143,1 4056* b = a2a32Q, c = bdi. The
1 2 3 0 * game (5 behaves like 2 , and b
13 2 “ “ behaves like a,. The game d is a3fl
14 2

F ig . 35. Misdre tables for three simple games.

TAME GAMES, AND RESTIVE AND RESTLESS GAMES

The only values which arise for Nim-positions are 012, l03, and rf 
(n = 0 ,1 ,2 ,... X which correspond to what we earlier called the Nim-types 
0, l.n". If all the positions (including the initial position) of some game G 
have 3f*-values selected from this population 012, l 03, n", we call G tame. 
Then:

T heorem  73. The sum o f tame games is tame. To compute its *9*-value, we 
can replace the summands by Nim-positions of the same 9*-values, and take the 
1f*-value of the resulting sum.

We do not bother to prove this in detail, remarking merely that it follows 
fairly easily by generalising the strategy for misere Nim.

It is handy to indicate that a game is tame by putting * at the end of its



146 HOW TO LOSE WHEN YOU MUST

Sf*-value. Then we can further abbreviate the values 012* and l 03* to just 
0* and 1*. So we write the values of tame games just as 0*, 1*. or n"*. 
With this additional convention, and the convention of writing the 3T*-value 
of n itself as n, our abbreviations become even more useful, for if we know the 
^•-values of tame games G and H, we can compute that of G +  H.

If all the options of G are tame, but G is not, then we call G restive or 
restless. For such games, with 5f*-value g**'*1' ", then Just one of g, g0 is 0 or 
1, the other being 2 or more. Since the behaviour is quite different in the two 
cases, we call G restive if g =  0 or 1, and restless if g0 = 0 or 1.

From the 3f*-value of a restive G, we can work out the outcome of the 
sum of G with any Nim-position N, and indeed the 3f*-value of any such 
compound. The rule is:

Mentally replace Gbya Nim-heap o f size g0, if all the heaps in N  have sizes 
0, 1, gv  or g0 +  2 1, and cf size g f  not. Then the misire outcome of G is the

same as the normal outcome o f the resulting Nim-position.

If the heaps of N  have Nim-sum n, then the 3f*-value of G +  N  is found 
from that of G by Nim-adding n to every entry, if each heap-size is 0,1, g0, 
or g0 + 2 1, and is otherwise mM, where m = g + 2 n.

On the other hand, there is no easy rule for finding the outcome of G + N  
for a restless G and an arbitrary Nim-position N. The tables show just how 
badly such sums can behave. We have chosen here the particular tables 
likely to be useful for simple games.

Note that in a sense, restive games are ambivalent Nim-heaps, which choose 
their size (g0 or g) according to the company. There are many other games 
which exhibit behaviour of this type, and it would be very interesting to have 
some general theory for them.

SOME TABLES FOR RESTLESS GAMES

We tabulate 1f~{G +  a +  b), where a and b are the row and column 
headings. This is the value of c such that G + a + b + c i s a  P-position. 
Since Nim-addition of 1 to a or b produces Nim-addition of 1 to c we only 
tabulate c for even a and b.

6  = 0 2 4 6  8  10 12 14 16 18 20 22 . . .

0 1 4 2 8 6 1 2 1 0 16 14 2 0 18 24
2 4 2 0 6 8 1 0 1 2 14 16 18 2 0 2 2

a = 4 2 0 4 1 0 14 6 16 8 1 2 24 2 2 2 0

6 8 6 1 0 2 0 4 14 1 2 18 16 24 26
8 6 8 14 0 2 14 18 4 1 0 . . •

Table for many restless games with If* = 21 4 2  (examples 221,2231)



SOME TABLES FOR RESTLESS GAMES 147

b = 0 2 4 6 8 1 0 1 2 14 16 18 2 0 2 2  . . .

0 1 4 2 8 6 1 2 1 0 16 14 2 0 18 24 ..
2 4 3 0 7 9 1 1 13 15 17 19 2 1 23
4 2 0 4 1 0 15 6 1 2 9 18 ...
6 8 7 1 0 3 0 4 14 1 2 2 0 ,,,
8 6 9 15 0 3 17 ...

>le for some restless games with 9* = 31 4 3  (example 22 21)

b == 0 2 4 6 8 1 0 1 2 14 16 18 2 0 2 2  . . .

0 1 4 2 8 6 1 2 1 0 16 14 2 0 18 24 ..
2 4 6 0 2 1 2 14 8 1 0 2 0 2 2 16 18 ..
4 2 0 4 6 8 1 0 1 2 14 16 18 2 0 2 2  ..
6 8 2 6 4 0 16 14 1 2 1 0 24 2 2 2 0  ..
8 6 1 2 8 0 4 18 2 2 0 2 2 1 0 14 16 ..

Table for many restless games with 9* = 41 4  (example 22321)

In each of these cases we can substitute for the options any other tame 
games with the same values of 9*, so that for instance 2+222l has the second 
of the three tables, since 2+ is a tame game with 9* =  o0202 • • • =  9*(22\  and 
222 (=  2 +  2 +  2) is a tame game with 9* = 22020 -- =  9*{2).

The simplest restless games with 9* =  3OS3, 2052, and 50S have tables 
obtained by Nim-adding 1 to every entry in these three tables. Also, the 
games 320 and 3220 have a table obtained from the first one above by replac
ing the leading entry by 0, and the games 3220 and 32320 have tables obtained 
similarly from the second and third tables above. We can replace the options 
in these cases also by other tame games with the same 3f*-values.

We now show that Grundy’s method of pruning reversible moves gives 
all possible simplifications.

Definitions. The misire outcome o~(G) is the symbol P o t  N according as 
the Previous or Next player to move has a winning strategy, in misere play.

G is like H iff o“(G +  T) = o~(H +  T) for all T 
G is linked to H (by T) iff o~(G +  T) =  o~(H +  T) = P for some T.

When G and H are unlike, any game T  for which G + T  and H + T  have 
distinct outcomes will be said to distinguish between G and H. Finally, for 
any game G we define its mate, G~, to be the game obtained from G by inter
changing 0 and 1 whenever they arise as positions of G—so 0~ = 1, 1_ =  0, 
and otherwise {A ,B ,C , . . . }~  =  So that we can point
out certain analogies, we ask the reader to define the normal outcome o+(G), 
and to define G+ = G for all G. It is immediate from the definitions that the 
misere outcome of G is the normal outcome of G~, and vice versa.
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T h e o r e m  74. The misire outcome o f G + G is always P.
(Compare: the normal outcome of G +  G is always P.)

Proof. When your opponent moves to a position H in one component, 
reply by moving to H~ in the other, until eventually the game reduces to 
0 +  1 or 1 +  0, a P position. (In the normal play analogue, we eventually 
get to the P-position 0 +  0.)

Lem m a . I f  G and H are unlike, there is a game T  with G + T  a P position, 
H + T  an N  position.

Proof. If not, there will certainly be some U with G +  U an N  position and 
H + U a P position. Then take T  =  {A~, B~, C ~ , . . . ,  U} when G =  {A, B, 
C ,...}, and observe:

H +  T  is IV, since the next player can move to H + U.

G + T  is P, since the options A + T , . . . , G  + A ~ , . . . , G  + U

are all N.(A + T  and G + A~ have the P option A +  A~.)
Now for the first of our main results.

T h eorem  75. G is like H if and only if
(i) G is linked to no option o f H,

(ii) H is linked to no option o f G, and
(iii) G and H have the same outcome if either is 0.

Proof. For if T  links G to some option of H, or H to some option of G, 
then T  distinguishes between G and H, and if G and H have distinct out
comes, 0 distinguishes between G and H. So for G to be like H, (iX (ii), and 
(iii) must hold. Supposing that they do all hold, we let T be a game for which 
G +  T  is N, and prove that H + T  is also N, supposing that G + U and
H + U have the same outcome for all options U of T. It is plain that this
suffices.

If G +  T  is N, we have one of:

(a) G =  T  =  0
(b) G' +  T  is P for some option G' of G
(c) G +  T' is P for some option T' of T.

In case (a), G +  T and H +  T  both have outcome N, by (iii), since these 
games are just G and H.

In case (b), H +  T  is N, since otherwise T  would link G' to H.
In case (c) H + T  is also P, by hypothesis, so that H + T  is N.
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Now for our second main result:

T h e o r e m  76. G is linked to H if and only i f :
(i) G is like no option o f H

(ii) H is like no option o f G.

Proof For if T  links G to H, then T distinguishes G from any option of 
H, and H from any option of G, so that (i) and (ii) must hold. Supposing that 
they do hold, then we can find for any option G“ of G a game U“ with G® + U“ 
a P position, H + Ua an N  position, and similarly for any option Hb of H 
a game Vb with G +  Vh an N  position, but Hb +  Vb a P position. We let 
T  be the game {Ua, . . . ,  Vb, . ..}  whose options are all these games Ua, . . . , V b 
corresponding to all the options of G and H.

Then G +  T  has options G® +  T, G +  Ua, G +  F*. typically, of which the
first two are N  since they have the option G“ +  Ua, which is P, and the third
is N  by supposition. Similarly, all options of H + T  are N, and so G +  T  
and H + T  will both be P, unless G =  H  =  0. But in the excepted case, 
1 links G to H.

(In the normal play analogues of Theorem 75, the condition (iii) is absent, 
so that the analogue of Theorems 75 and 76 have the same form, and we 
inductively see that G is like H if and only if G is linked to H. We can induct
ively deduce from these theorems that G is like H if and only if G is like no 
option of H and H is like no option of G, and thence, inductively again, that 
every game is like some Nim-heap.)

T h e o r e m  77. Suppose that neither G nor H has a reversible option, and that 
G is like H. Then every option of G is like some option of H, and every option 
of H like some option o f G.

Proof. Since G is not linked to Hb, we must have either some G“ like Hb, 
or G like some option of Hb. But in the second case, Hb would be a reversible 
option of H, and since the proviso is clearly satisfied, this contradicts our 
assumption. So every option W* of H is like some option G“ of G, and vice 
versa.

THE SIMPLEST FORM OF A GAME FOR MISERE PLAY

We obtain the simplest form of a game G by making all possible simplifica
tions of the following type. At any position H of G, we may delete certain 
options of H to obtain a simpler position K  if and only if K  is an option of 
each deleted option of H, and if K  is zero, H was an N-position.

Theorem 77 plainly implies that if two like games G and H are both in 
simplest form, they are identical. So indeed Grundy’s method of pruning



150 HOW TO LOSE WHEN YOU MUST

reversible moves gives all possible simplifications, and we have proved all 
assertions made at the start of the chapter.

FURTHER DEVELOPMENTS

Since we are not interested in the distinctions that can be made between 
like games, we shall suppose from now on that all games are initially presented 
in simplest form. In the rest of the chapter we describe some theoretical 
results about the behaviour of games under addition. Since our results do 
not seem to have much application to practical game-playing, we do not 
give the proofs, which are surprisingly subtle in some cases.

SUBTRACTION OF GAMES

If .4 +  B =  G, we call A and B parts of G. It is natural in this case to write 
A =  G -  B. The cancellation theorem asserts that in fact A is determined 
by G and B. This theorem asserts that

(i) If G +  T  and H +  T  are like, so are G and H, and vice versa
(ii) If G + T  and H + T  are linked, so are G and H, and vice versa
(iii) T has only finitely many parts.

It seems curious that the induction requires all three parts.
Given the theorem, differences G — H are unique when they exist, and in 

. fact whenever G — H exists, it equals {G' -  H,G -  H'}, where in the brackets 
any differences that do not exist are neglected. So we have an algorithm for 
subtraction—compute the game {G' — H, G -  H'}, and then add it to H 
to see whether the sum is G. Of course, since the cancellation theorem tells 
us that games form an abelian semigroup with cancellation, we could in 
any case adjoin formal differences to obtain an abelian group, but I have not 
yet met any theorem whose proof can be simplified in this way.

EXTRA VERTED, INTROVERTED, AND DIVINE GAMES

Certain games exhibit quite surprising splittings into parts, as we shall 
see later, and in the study of this phenomenon the following notions seem 
to be useful. We call G extraverted if it has each of its options as a part, and 
introverted if it is a part of each of its options. We call G divine if whenever it 
is a part of every option of some game H, it is a part of H.

The extraversion-introversion theorem then asserts that G is extraverted 
if and only if it is divine, and if and only if it is a part of the game G+ =  {G}. 
Also, if G and H  are extraverted, so are G+, G# = {G, G +  1), and G + H, and
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the class of all extraverted games is precisely the closure of 0 under these 
operations. Finally, the only introverted games are 0 and 1, which are also 
the only games with negatives.

In particular, 2 is an extraverted game, and so is a part of 2+. Using the 
subtraction algorithm, we find 2+ -  2 = {2+,2  — 1,2 — 2} which simple 
fies to {2+3, 2+, 0}. We draw the resulting equation in tree form:

s >
2+ = 2 + 2+12+0

Notice the rather remarkable fact that the whole is here simpler than one of 
the parts. I do not know of any game in which every part in every proper 
partition is more complicated than the whole.

EVEN, ODD, AND PRIME GAMES

We call the game G even when G is simpler than G +  1—more formally, 
when the simplest form of G is a position in the simplest form of G +  1. 
It can be shown that every G is either even or odd but not both, where H is 
called odd if it has the form G +  1, G even. Alsp, the sum of two even games 
is even, so that the even games form a subsemigroup of index two in the 
additive semigroup of all games.

We call the game P prime if in any partition P =  A +  B either A or B 
is 0 or 1. These games are analogous to prime numbers in the multiplication 
of ordinary integers, and I conjectured at first that the partition of G into 
primes was unique. Note that the full form of the cancellation theorem shows 
that no game can have more than finitely many partitions into primes 
(neglecting parts 0 or 1), and we need only consider partition of even games 
into even primes. It can be shown that extraverted games do indeed have 
unique prime partitions, so that for instance the above partition of 2+ is 
its only partition into even primes.

However, the following example, found jointly with Simon Norton, shows 
that certain games have more than one partition into primes. Let G =  (4 + 2)+. 
Then it can be shown that G = 2 + K  = 4  + L, where K  =  {G, G +  1, 4}, 
L = {G, G +  1, K, K  +  1,2}. The fact that G -  2 and G -  4 exist and have 
these values follows from a slight strengthening of our remarks about
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subtraction—if all differences G' -  H and G — H' exist (G', H' denote typical 
options of G and H \ then so does G -  H, unless perhaps when G =  0. 
Using this we can generalise the example so as to produce a game with an 
arbitrary finite number of distinct prime partitions. Further properties of 
the additive semigroup of games seem quite hard to establish—if G +  G = 
H  +  H is G necessarily equal to H or H +  1? If not, the group of game- 
differences has some non-trivial element of order 2.

The following remarks are helpful in identifying primes. If 0 or 1 is an 
option of G, then G is prime. If all options of G are prime, then so is G, unless 
G is one of the three particular games 2+, 3+, 32. These are extraverted games 
and so have unique prime partitions. That for 2+ has been given above, 
and 3+ has the similar partition 2 +  3+13+l, while 32 =  2 +  2.

We end our comments on partitions with tree-diagrams for the unique 
prime partition of the game (32)+ (Fig. 36):

As a footnote to this chapter we tabulate the first few of the numbers y, defined on page 140. 

We have

Fio. 36. The prime partition of (32),.

where y 0 ■= 0-149027 . . .
y, =  1 108821 . . .  
ya = 2 156694 . . .

= 4458922  . . .  
y4 =  21-992232 ...
ys =  4171779 999999999...



CHAPTER 13

Animating Functions, Welter’s Game, and 
Hackenbush Unrestrained

Fallen fro m  his high estate,
And welt 'ring in his blood.

John Dryden, "Alexander's F east"

There are some impartial games whose theory depends on unexpected 
interrelations between ordinary addition and Nim-addition.

WELTER’S GAME

This game is played on a semi-infinite strip with a finite number of coins, 
at most one per square. The squares are numbered with the non-negative 
integers 0 ,1 ,2 ,3 ,... from the left end of the strip, as in Fig. 37. The legal move 
(for either player) is to move any one coin from its present square to any

I Q l l  l® l© l 4  |Q |  6 IQI 8 I 9  |101® |12I© I14I15I16I® [18101201 •«  •

F i g . 37. A position in Welter’s game.

unoccupied square with a lower number. Thus, like the Silver Dollar game, 
Welter’s game ends when one player (the loser) is unable to move because 
the coins are jammed in the lowest possible numbered squares 0, 1, 2 , . . . ,  k. 
Welter’s game differs from the Silver Dollar game in that any coin is allowed 
to bypass others in the course of a move.

We shall write [a | b | c | . . .  ] for the Grundy number of the position in
this game when the coins are on the squares numbered a ,b , c ,  It is easy
to check that [u] =  a, and that [a | b] =  (a + 2 b) — 1, so that both nim- 
addition and ordinary addition are involved in the theory of Welter’s game. 
The full theory is surprisingly complex, and we shall be able to give it only 
after a detailed analysis of functions involving both kinds of addition, but
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for the benefit of the reader who does not wish to follow the detailed argu
ment, we first give a computation rule for [a | b \ c \ . . .  k].

We take as our example the case [ 2 1 3 1 5 1 7 111 131 171 19 123]. We
examine the numbers to see which pair are congruent to each other modulo 
the highest possible power of 2, and then we take any such pair out as mates. 
In our example, we have the congruences 3 s  19 and 7 s  23 (mod 16) but no 
congruences (mod 32), so we can take either (3,19) or (7,23) as our best mated 
pair.

Having removed the best mated pair, we treat the remaining numbers in 
the same way, obtaining a succession of pairs of mates, with at most one 
number (the spinster) left unmated. In our example, the mates are (3, 19),
(7,23), (5,13), (11,17), and there is a spinster 2  Then if (a, b \ (c, d),. . .  are the
mates, we have the equation

[ a |i> |c |< f |. . . ]  =  [a | ft] + 2 [c |< )  + 2 . . .  

if there is no spinster, and

[ a | f t | c |d | . . . ]  =  [ a |h ]  + 2 [c |d ]  + 2 . . .  + 2 [s]

if there is a spinster s. The value is then computed using the formulae
[a | b~\ = (a +  2 b) -  1, [s] =  s, which we have already noted.

So we have the number

[3 119] + 2 [ 7 1 23] +  2 [5 | 13] +  2 [111 17] + 2 [2]

= 15 + 2 15 + 2 7 + 2 25 + 2 2 =  28

for the Grundy number of our example. It must be admitted that the rule is 
somewhat curious. In order to find the good move, if any, we need to supple
ment the rule by giving an inversion formula for the Welter function, but 
now that we have whetted the reader’s appetite, we shall postpone this to 
the end of the chapter. In the example, the good move is unique, from 13 to 1.

NIM-ADDITION AND NEGATIVE NUMBERS

It is natural and necessary to extend the definition of Nim-sums to negative 
numbers, using the natural binary expansions of negative numbers, which 
begin with infinitely many Is. In particular, the expansion of the largest 
negative number, —1, is an infinite string consisting entirely of l ’s. We can 
perform the additions quickly by just adding another rule to those we gave for 
positive numbers:

— 1 +  2 n =  — 1 — n.

The number appearing on both sides of this equality has the expansion
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"complementary” to that of n—since it plays an important role in the theory 
we have decided to give it a special name, n, throughout this chapter. Thus

- 3  + 2 7 = 2 + 27 = 5 =  - 6 .

It is also natural to order the numbers in the lexicographic order of their 
binary expansions, namely

0 <  1 <  2 <  - 3 <  - 2  < - 1

so that positive numbers precede negative ones, and to count 0 among the 
positive numbers. We shall make no particular use of this ordering, but the 
reader’s thoughts will be clearer if he bears it in mind, and notes that in this 
system the “infinite singularity" is between — 1 and 0.

A function /(x ) of the form

f i x )  =  ...((((x  + 2a) + b) + 2 c) + d) + 2 . . .

is called an animating function (defined in terms of addition, JVim-addition, 
and preserving the mating function—see below). These functions have a 
particularly elegant theory. Note that they form a group under composition, 
for if /  and g are two animating functions, so is the function f ig(x)\  and the 
inverse function f ~ i(x\  for which we have the formula

/ -1(x) =  ( ( ( ( . . .x . . . )  — d) + 2c) — b) + 2a.

We define the mating function (x | y) (not itself an animating function) to 
have the value 2"+1 — 1 if x and y  are congruent modulo 2" but not modulo 
any higher power of 2, and to have the value — 1 when x = y. Since this value 
depends only on the powers of 2 modulo which x and y  are congruent, we 
have the important invariance properties:

(x | y) = (x +  a | y  +  a) =  (x +  2 a | y  -+■ 2 a) = (/(x) | f(y)), 

for any number a, and so for any animating function / .

L em m a . We have the equalities

n + 2 (n |0) =  n -  1, m + 2 ( m |- 1 )  =  m + 1,

and
a + 2b + 2{a\b) = (a + 2b) -  1.

Proof. Let m +  1 = n, so that m = n — 1. The binary expansions of these 
agree except that at the right-hand end m has 0 1 ...  1, where n has 10 ... 0, 
so that we obtain either from the other by Nim-adding the number with 
expansion 11...1, which is the number (n10) = (m| — 1). [In the case



m =  — 1, n =  0 we get an infinite string of l ’s.] Now, using the invariance 
properties,

a + 2 b + 2(fl|i») =  a + 2b +  2 (a +  2 b |0 ) =  (a +  2b) -  1.

T h e o r e m  78. Any animating Junction f  can be written in the form

f(x)  = x +  2 (x |a) +  2 (x 11) +  2 . . .  + 2 n,

for some numbers a, b , . . . ,n .

Proof. We need only verify that if/(x) has such a form, then so d o /(x )+ 2m, 
/(x ) — l,/(x ) +  1. The first is obvious (replace n by n +  2 m \ and the equations

/(x ) -  1 = /(x ) + 2 (/(x)10) = /(x ) + 2 ( x | / - ‘ (0))

/(x ) +  1 =  /(x ) +  2 (/(x )| - 1 )  =  /(x ) + 2 ( x | / - ‘( - l ) )

prove the remainder.
Now using the equation (x | a) +  2 (x | a) =  0, we can eliminate repetitions 

among the numbers a, b, c, . . .  in the Theorem 78. When we have done this, 
the remaining numbers a, b, c , . . .  are called the poles of / .  The number n is 
called the Nim of/ ,  and written \ f \ .

T heorem  79. An animating Junction f  is determined by its poles to within 
a Nim-additive constant (and so completely determined by its poles and its 
Nim).

Proof. Note that (x | a) is positive except when x =  a, when it is — 1. So 
supposing a, b, c, . . .  are distinct, the function

x +  2 (x | a) +  2 (x | b) + 2 . . .  + 2 n

has the same sign as x +  2 n unless and only unless x  is one of the poles
a, b, c ,  So the poles are characterised as the places where f (x )  does not
have “the prevailing sign”. There is a definite sense in which they are “the 
singularities” of / .

Consider for example the function

/(x ) =  (((x — 2) + 2 3) +  3) + 2 5.

How do we compute the form of Theorem 78?
It seems helpful to imagine the calculation being performed on a binary 

adding machine whose bell rings whenever we have an infinite carry (as in 
adding 1 to — 1, or subtracting 1 from 0). Those numbers x for which the 
bell rings an odd number of times in the calculation are plainly the poles. 
In the course of a Nim-addition, even of a negative number, the bell never 
rings.

156 ANIMATING FUNCTIONS, WELTER’S GAME, HACKENBUSH UNRESTRAINED



THE WELTER-NORM OF A FUNCTION / 157

In the example, the subtraction of 2 will cause the bell to ring only for
x = 0 and 1, so these are the poles for the function x — 2  The addition of
3 to (x -  2) +  2 3 will ring the bell only when

(x — 2) +  2 3 = - 1 ,  - 2 or - 3

that is to say, when

x -  2 =  0 +  j 3,1 +  2 3, or 5 +  j ^ =  3,2, or T, 

which is when x itself is one of —2  — 1, or 0. So we have 

/(x ) =  X +2  (X10) + 2 (x 11) +2 3 + 2  (XI - 2 )  + 2  (XI - 1 )  + 2 (* 10) +  2 5, 

which simplifies to

x + 2(x| 1) +  2(x| - 2 )  +  2(x| - 1 )  + 26.

Note that the bell rings twice in the calculation corresponding to x =  0, 
so that 0 is a “double pole”, and can be ignored. Note also that Nims are Nim- 
additive for composite functions—that is, for the function h(x) = f(g(x)) 
we have | h \ =  | / |  + 2 \g |.

The function g{x) =  (((x +  2) +  2 3) — 1) +  2 5 has the same poles and 
Nim as our example / ,  and so we have the identity f (x )  =  g{x\ There are 
many other identities deducible in this sort of way, which make it evident that 
the canonical form in terms of poles and Nim is superior to the forms defined 
by successive additions and Nim-additions. (Note that any function of the 
form seen in Theorem 78 is indeed an animating function.)

THE WELTER-NORM OF A FUNCTION /

For animating functions of zero Nim there is a second kind of Nim- 
additive norm, which we call the Welt, [ / ] ,  erf/ .  It can be computed as follows. 
For the function f t defined by

/.(x) =  x + 2 (x|a),

we have [ / J  = a. For other functions, we use the composition rule that if 
h(x) = f(g(x)) for functions of Nim zero, we have

w  = i n + 2  h i

Let us see where this leads.
For the function b defined by

/«,»(x) =  x + 2  (x | a) + 2 (x | b),.



we have the composition formula
/**(*) =  X +  2 (x I a) +  2 (fa[x) I f am

= £(x) +  2 (/a(x) I c), say,

where c =  f a(b) = b +  2 (a | b). So we have, by composition,

[/«,*] =  c + 2 a =  a + 2 b + 2(a|b) =(a + 2 b) -  1,

which we asserted before was the Welter function [a | f>].
Applying the same technique to

/«.».<(*) =  x + 2 (x | a) + 2(x | b) + 2(x | c)

(for any c), we find

= a + 2b + 2c + 2(a\b) + 2 (a|c) +  2 (b|c).

So we shall do an about-face, and redefine the Welter function 

[ a | b | c | . . . ]  =  a + 2b + 2c + 2 . . .  +  2(a|b) + 2 (a|c) + 2. . .  + 2 (h|c)

+ 2 . . . ,

the Nim-sum of mating functions being taken over all unordered pairs of 
arguments, and for any animating function

/(x ) =  x + 2 (x | a) + 2 (x | b) + 2 . . .  + 2 n,

define the Welt of  f  as the number

[ / ]  = 0 | i > | c | . . . ] .

[There is one minor irritation. Since adding a “double pole” at k makes 
no difference to / ,  we should ideally have

[ * | * | a | f c | c | . . . ]  =  [ a | b | c  | . . . ] ,

but unfortunately we have instead

[ * | * | o | f c | c | . . . ]  =  - 1  + 2 [a|  b | c | . . . ] .

So the value of [ / ]  depends slightly on the way that /  is presented, and really 
we should regard the Welt of /  as a pair of values n, n, related by Nim-adding 
— 1. We ignore this from now on.]

Now for distinct non-negative integers a,b,c, .. .  the function [a | b | c j . . . ]  
is indeed computed by the curious rule we gave at the start of the chapter. 
To see this, suppose again that a and b are a best-mated pair—that is to say,

158 ANIMATING FUNCTIONS, WELTER’S GAME, HACKENBUSH UNRESTRAINED



that they are congruent to each other modulo the highest possible power of 2. 
Then for any other number of the set, c, say, we have (a | c) =  (b | c), since 
a and b will be congruent to c modulo the same power of 1  So in the formula 
for \a | b \ c | . . .  ] the terms (a \ c) and (b | c) will cancel for all such c, and 
so we have the splitting

[ a | & | c | . . . j  =  a +  , b + j ( a | b ) + , c + I . . . + 1 ( c | d ) + 1 . . .

which, together with the formula [a \b]  = (a + 2 b) — 1, suffices to prove the 
rule.

So the Welter function [ a | b | c | . . . ] ,  although it can be defined as a 
completely symmetric function erf its arguments, nevertheless splits naturally 
into Welter functions of at most two arguments. It is because the properties 
of (a | b) produce this mating that we call it the mating function.

Note that the Welter function is an animating function of each of its 
arguments. In fact, since the typical animating function

f (x)  =  x +  2(x|a)  +  2(x|b) + 2 . . .  + 2 n 
can also be written

f (x)  =  [ x | a | b | c | . . . ]  + 2nlf

where n2 = n +  2 [a | b | c | . . .  ], the Welter function is in a sense merely the 
most general animating function.

There is another way of evaluating the Welter function of k ^  2 arguments, 
by reducing it to functions for k -  I and k — 2 arguments using the formula

[ . H | e | < | . . . ] . [ [ « | c | J | . . . ] | [ » | c | i | . . . ] ] + 1 [ c | < | . . . ]
which follows immediately on expanding both sides in terms of the definition, 
and using the invariance property of the mating function to show that

( [ a | c | d | . . . ] | [ b | c | r f | . . . ] )  =  (a|b).

L em m a . We have [ a ' | b \ c | . . .  ]  =  [ a  | b' \ c | . . .  ]  if and only if

[fl' | b ' | c | . . . ]  = | > | b | c | . . . ] .

Proof. When we expand both sides of the first equation by the formula 
above, we find it equivalent to

l S \ c \ d \ . . . l + 2 [ b \ c \ d \ . . . - ]  = [ a \ c \ d \ . . . l + 2 [ b ' \ c \ d \ . . . ]

while the second equation similarly becomes

[a' | c | d | . . .  ] +  2 [b' | c | d | . . .  ] = [a | c | d | . . .  ] +  2 [b | c | rf | . . . ] ,

which asserts the same thing.
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THE EVEN ALTERATION THEORY

We are approaching one of the most remarkable properties of the Welter 
fu n c tio n . L e t u s  w rite

[a I b I c  I "1 n

to  m ean  th a t  th e  e q u a tio n  [ a | b | c | . . . ]  = n re m a in s  tru e  w h en ev e r we 
re p la c e  a n y  even n u m b e r  o f  th e  le tte rs  a, b, c, . . . ,  n by  th e  c o rre sp o n d in g  
p r im e d  le tte rs  a', b \ c', . . . ,  ri.

T h e o re m  80. Let  [ a  16 1 c | . . .  ]  = n, and let ri be any number distinct from  
n. Then there are unique numbers a ', b\ c', . . .  distinct respectively from the 
corresponding numbers a, b, c , . . . ,  so that we have
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Proof. Since the Welter function is animating in each argument, we can 
uniquely solve the equations

[o' | b | c | . . .  ] =  [a | b' | c | . . .  ] = [a | b | o' | . . .  ]

for the numbers a', b', c ' , . . . ,  which will automatically be distinct from the 
corresponding a, b, c , . . .  Since the lemma then shows, for instance, that 
[o' | b' | c | d | . . .  ] =  n, it provides an inductive proof of the theorem.

L em m a . I f  b ,c ,d, . . .  are distinct, then the Welter Junction [a | b | c | . . .]  
has the same sign as the Nim-sum a + 2 b + 2 c + 2 . . if and only if a is 
distinct from each o fb ,c ,d ,___

Proof. This follows immediately from the expansion of [a | b | c | . . . ] ,  and 
the fact that (a | x) is negative if and only if a = x. Recall that 0 is counted 
as positive.

Now to show that [a | b | c | . . . ]  is indeed the Welter function of the appro
priate position in Welter’s game, we must show that it is the least number from 
0,1,2, . . .  which is not the value of any of the numbers

[a' | b | c | . . . ] ,  [a | b' | c | . . . ] ,  [a | b | d  | . . . ] ,  . . .  (the excludents)

for which the arguments in each case are distinct and positive (counting 0), 
and a' < a, b' < b,c' < c ,__

Now the lemma assures us that its value is positive for distinct positive 
a, b, c , . . . ,  and moreover, that if n and ri are positive, and b ,c , . . .  distinct 
and positive, then the solution d  of the equation [d  | b | c | . . .  ] =  ri is



positive. Moreover, we know that the Welter function changes when we 
change any variable, so that [a | b \ c | . . .]  is certainly distinct from all its 
excludents. So it will suffice to prove that if n' <  n in the equation
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r« b c
- 1 = "

k b’ c’ . »

then an odd number of the numbers a', b\ c',... are less than the corresponding 
numbers a ,b ,c , . . .  (for this will ensure that at least one is).

L e m m a . I f

b c
J = "

| y b' c' .

then we have (a' | b) = (a \ b'\ (a | b) — (a' | b'\ and, for any x, an even number 
of the inequalities

a + 2a' + 2x < x  

b + 2b ' + 2x < x  

c + 2 c ' + 2 x < x

n + 2ri +2y< y
where y is U or x according as the number o f arguments in the Welter functions 
is even or odd.

Proof. The first assertions follow easily from the invariance property of 
the mating function and the formula we gave for the Welter function of k 
arguments in terms of functions of k — 1 and k — 2 arguments.

For the remaining assertion, we suppose without loss of generality that 
(a | b) is the largest mating function in the expansion of any of the given 
Welter functions. It then follows that the equation

[a |b ]  + 2 [ c | d | . . . ]  =  n

remains true whenever any even number of primes are attached to c ,d, . . . ,n ,  
so that we have

Vc j d I ~| m

where m =  n +  2 [a | b], m' = ri + 2 [a | f>]. By the inductive hypothesis
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there are evenly many valid inequalities among
c + 2 c’ + 2 x < x

d + 2d' + 2 x < x

m + 2 m' + 2y < y

the last of which is equivalent to n + 2ri + 2y < y. So the lemma is true 
provided evenly many of

a + 2 a> + 2 x < x  

b + 2b' + 2x < x

are valid But since (a | b) =  (a ' | b1) we have [a | b] =  [o' | b j  by choice of a 
and b, so a + 2 b = a' + 2 b', and the two given inequalities are identical. 

Now we come to the last part of the even alteration theory.

T h eo rem  81. I f  a, b ,c , . . . ,  a', b\ c ' , . . . are distinct and positive (counting 0), 
then the number o f valid inequalities among

a' < a, b' < b,cr < c , . . . , r i  < n
is even.

Proof. The proof uses several identities which were used by Welter to 
define his function(l), namely .

[ 0 1 a  | b | . . .  ]  =  [ a  -  1 1 b -  1 . . . ]

[ a  + 2 x | b  + 2x | . . . ]  =  [a | b | c ( . . .  ] + 2y

where in the second case, y is 0 or x  according as the number of arguments 
in the Welter function is even or odd These are easily verified from our 
formula for his function and properties of the mating function.

Now that we do is use these identities to show that the parity of the number 
of valid inequalities above is the same in all cases, inductively.

Now if, say,

then we have
[0 I a I b c I 1 n

x j a' | b' c ' | " ' J  =  n'

r<j — 1 b — 1 I c — 1 I I  n
La' — 1 b' -  11 c7 -  11 *" J  = ri

and the parities in these two cases are the same since we cannot have x < 0. 
So it suffices to show that the two equations



[a I b I c I 1 n
a' I h' | c' j "  ” J  ~ ri

["a +  x l t  +  x c +  x |  ~\ _  n 4- y
|_a' +  x | b' +  x c' +  x | ’"  J  ~  ri +  y

yield the same parity. But we know that an even number of the three inequali
ties

a' < a, a' + 2 x <  a + 2 x, a + 2 a! + 2 x <  x

are valid (the theory of Nim shows that, more generally, if p + 2 q + 2. . . = s ,  
then an even number of the inequalities p + 2 t < p,q + 2 t < q , . . . , s  + 2 t < s  
are valid). So it suffices to show that an even number of

a +2°'  + 2 X < x  
b + 2 b' + 2x < x

n + 2r i + 2 y <  y, 

which is what the lemma gives.

T h e o re m  82. (W e lte r’s theorem .)* [ a  | b \ c \ . . .]  is the Grundy number of the 
corresponding position in Welter’s game. Moreover, if [a | b \ c | . . . ]  = n, and 
ri < n, then an odd number of legal moves are available in Welter’s game to 
take the position to one of Grundy number ri, while if  ri > n, there will be an 
even number (possibly zero) of such moves.

This theorem has already been proved in the course of the previous dis
cussion.

AN INVERSION ALGORITHM

The reader who wishes to play the game will find himself in need of an 
algorithm to solve equations such as

[a | b | c | . . .  | x] =  n.

We first show that no such algorithm is needed if he wants only to play a single 
game in which there are at most four coins. For if there are exactly 4 coins, 
at a,b,c ,d  with mates a, b and c, d, then the position is a second player win 
if and only if
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0 | i>]  + 2 [c | d] =0 ,



that is to say, if and only if

t « l * ] “ [ c | 4
or finally, if and only if

a + 2b = c + 2d,

so that the outcome of any 4-coin position is the same as that in Nim. The 
three coin positions have the same outcomes as Nim-positions if we number 
the squares from 1 instead of 0, for we can imagine a fourth coin at 0. The 
two coin second player wins are 2n, 2n +  1.

These observations can be proved without developing the general theory, 
and they seem to have been made again and again by many people indepen
dently.

The following seems quite a good algorithm for inverting the Welter 
function. If we wish to solve

[Vi | b | c | . . .  | x] =  n,

make some hypothesis about the marital status of x (that is, whether x is 
the spinster, or which of a, b, c , . . .  is its mate). This hypothesis enables us to 
complete the entire mating pattern, and enables us to solve for x. If the 
result confirms our hypothesis, x is the solution. If not, the new value of x 
is used to suggest a better hypothesis. It can be shown that the process 
converges after a number of steps which is bounded by both the number of 
binary digits in the final answer, and two more than half the number of 
arguments in the Welter functioa It often converges much faster.

We take as an example the equation [2 1 3 1 5 17 1 x] = 0. It seems plausible 
in general that a good first hypothesis is that x is ill mated—in this case that 
x is the spinster. This gives

[3 I 7] +  2 [ 2 15] +  2 x = 0,

whence x =  5. This is very well mated with 5, so we suppose

[x 15] +  2 [ 3 1 7] +  2 2 = 0

which yields [x | 5] =  5, x +  2 5 = 6, so x  — 3. This is now very well mated
with 3, so we suppose

[x I 3] +  2 [ 5 1 7] +  j 2 = 0,

whence [x 13] =  3, x +  2 3 =  4, x = 7. This finally yields

[* I 7] +  2 [3 | 5] +  j 2 = 0,

and so [x 17] =  7, x +  2 7 = 8, and x =  15. The example has been selected 
to illustrate a slowly converging case, and our initial assumption was
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suspect—plainly x must be better mated with one of 2 and 5 than these are 
with each other.

If we try instead the equation
[2 1 3 | 5 1 7 1 111 x ] = 0 , 

the initial assumption that x mates with 2 yields x =  5, and then the assump
tion that x mates with 5 yields x =  9, which is correct Of course when 
actually playing the game we must decide which one of a, b, c , . . .  to change, 
if we wish to decrease n to ri. I do not know of any rule which helps us to do 
this. However, it might be helpful to remark that the largest power of 2 dividing 
n -  ri is the same as that dividing a — a',b — b' , . . . ,etc. This at least helps us 
to make sensible hypotheses about the mating behaviour.

It should be noted that the rules we have given for computing and inverting 
the Welter function have been chosen with mental computation in mind, 
so that our reader can make almost instant responses at the gaming table. 
The iterative technique for inversion naturally has the property that mistakes 
made in the initial iterations are irrelevant, and that the final answer has 
been checked by actually computing the Welter function.

Other algorithms for computing and inverting the Welter function are given 
in Winning Ways, where the misfcre form is also analysed. It turns out that 
Welter’s game is tame!

HACKENBUSH (UNRESTRAINED)

This has also been called Hewitt, Graph and Chopper, and (when played 
with pictures of people) Lizzie Borden's Nim. It is played with a picture, 
perhaps like that of Fig. 38. The graph may have loops (the apples on the



tree) and multiple edges (the lamp-bulb). Each component of the graph is 
required to contain a base-node—that is, to say, one of the nodes indicated 
in our Figure by small circles lying on a dotted line which is not part of the 
graph (and is called the ground).

The two players play alternately, a move consisting in the removal (chop
ping) of a single edge together with any part of the new graph which no 
longer contains a base node. So for instance, removal of the upper part of the 
spider’s thread disposes of the spider and window—removal of the lower 
part disposes only of the spider. The player loses who is unable to move 
because no edge remains.

THE WEIGHT OF A PICTURE

We show how to compute a number, called the weight of a picture, which 
will turn out to be its Grundy number. We allow ourselves to identify any 
set of base nodes, or the nodes of any circuit, an edge which joined two 
identified nodes becoming a loop. Thus Fig 38 has the same weight as

166 ANIMATING FUNCTIONS, WELTER’S GAME, HACKENBUSH UNRESTRAINED

Tree Spider and Door Aerial Barrel Pipe Lamp
Window

F ig . 39. The Hackenbush Garden.

Fig 39, in which this identification has been performed, and which we have 
further simplified by omitting the fourteen edges of the house-frame.

Now we observe that in play, a loop at a node has just the same effect as 
a twig at that node, so that we shall consider the resulting diagram as if it 
were made out of (mathematical) trees. We proceed down these trees, marking 
any edge with the number (a + 2b +  2 ...) +  I, where a, b, c , . . .  are the 
numbers marked at the edges it immediately supports. At a twig there is no 
supported edge, and so the mark is 1, and of course a similar remark holds 
for a loop.

These numbers we call the stresses at the various edges—they have been 
marked in Fig 39, except that we have omitted the marks on edges of stress 1. 
The weight of the picture is the Nim-sum of the stresses at all edges which 
meet the ground (in the identified version).

With a little practice, the stresses can be inserted directly on the original
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F ig . 40. Girl with umbrella and bird.

form of the diagram. In Fig. 40 we give some moderately complicated 
examples for the reader to test his skilL In what follows, we write a{x) for 
the stress on the edge x. This is to be carefully distinguished from another 
number associated with any edge—we use <w(x) for the number (ofx) 10), 
which we call the weight of x. As the next Theorem shows, the weight is the 
contribution of x itself!, while the stress is that of the edge together with its 
load. (The load of an edge is the collection of edges which would disappear 
if that edge were deleted.)

T heorem  83. (The weight theorem.) The stress on any edge x is the Nim- 
sum of the weights o f that edge and all the edges in its load.

Proof We consider the identified form of the picture. Then every edge 
other than x in the load of x is one of the edges immediately supported by x, 
or in the load of just one of these edges y. So by induction, the Nim-sum of the 
weights of all edges (other than x) in the load of x is the Nim-sum of the stresses 
on these edges y immediately supported by x. But this is just a(x) -  I, by the 
definition of <r(x), and Nim-adding the weight (a(x) 10) of x itself, we obtain the 
stress <t(x ).



T h e o r e m  84. (The change of grip theorem.) I f  the loads o f two edges x and 
y in pictures P and Q are isomorphic, then the weights o f x  and y are equal.

Thus in Fig. 40(a), the stress on the girl’s forearm is 6, while in Fig 40(b) 
that on her foot is 2, but we see (610) = (210) =  3, so that indeed the weights 
are equal. A similar situation occurs as the strong-man changes arms in Fig 
41 and it is this that we take as our example.
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F ig . 41. The ambidextrous strong-man.

Proof Let L be the load of x  in P (or of y  in Q). Since L is connected it 
suffices to consider the case when the endpoints of x  and y  lying in L  are 
joined by an edge z. If L remains connected after deletion of z, then the load 
of any edge of L  in P is the same as that of the corresponding edge in Q, so that 
«r(x) =  ofy), whence aAx) = to(y).

Otherwise deletion of z from L results in two components A and B, whose 
weights a and b are the same in P as they are in Q. (In Fig 41, a = 1, b = 3.) 
Then the stresses on x  and y  are

<r(x) =  ((b +  1) + 2 a) +  1, er(y) =  ((a +  1) + 2 b) +  1, 

and using the invariance property of the mating function,

aj(x) =(((b +  1) + 2a) + 1 10) 

= ((*+ l ) + a a |  - 1 )
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=  (b +  1 1 - a  -  1)

= (a +  1 1 - b  -  1)

= "tv)
similarly, proving the theorem.

Now suppose some picture P is supplemented by adjoining a new piece 
of weight co at some point of P, so as to obtain a new picture, which we shall 
call P(co)i How does the weight of P(co) vary with co? We assert that it is plain 
from the definition of the weight of a picture that the result is in fact an 
animating function of co. The same holds for the stress on any edge in P 
as co varies. It follows that when we chop an edge x, the stresses on edges y 
supporting x change in accordance with the following law: if y  supports x, 
and ax(y) denotes the stress on y  after x is deleted, then we have

«V ) | 0,00) = "(*)•
Now we define a cycle as a set of distinct edges forming a circuit, or a 

path connecting the base to itself. We say that two edges are concyclic if 
they belong to exactly the same non-empty set of cycles.

In Fig. 42 the legs of the boy form one class of concyclic edges, the legs of

Fic. 42. The lovers’ bridge.

the girl another, and the two sides of her skirt a third. The only other class 
containing more than one edge is {p, q, r, s, t}.

We define the function (x | y) =  (tr f̂y) | OX the weight of y in the picture 
obtained by deleting x.

T heorem  85. (T h e  co n cy c lic  edges th eo rem .) On any concyclic class o f edges, 
the function (x | y) has the properties (like the mating function for numbers):

(>) (* | y) = tv | *)
(ii) I f  x, y, z are distinct edges, then some two of the three numbers (x | yX 

(x | zX (y | z) are equal and strictly less than the third.
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Proof. The symmetry of this function follows from Theorem 84. Let r, s, t 
be three concyclic edges, and consider any cycle containing them. At least 
one of the endpoints of the three edges is connected to the ground by a path 
not containing any of the three edges. If r, s, r and their endpoints r,, r2, s ,f s2, 
fj, t2 are labelled in order round the cycle so that rl is such an endpoint, 
then t2 will be another. Comparing Fig. 43(s) and 43(f) we see that

(ff,(r) | °fr)) = (t | s),

(<r,(r) 10) = (f | r),

(<7,(r)|0) =  (s|r),

the property (ii) for edges follows from the corresponding property for 
numbers.

and since

(P)

(q)

(r)

U) -

(0

F ig . 43. How the bridge collapsed.
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T h e o r e m  86. (The Hackenbush theorem.) The weight co(P) o f a picture is 
the Grundy number of P regarded as a position in the Hackenbush game.

Before proving this, we can use it to find the winning move in the Hacken
bush Homestead (Fig. 38). Let us examine the equivalent Hackenbush 
Garden shown in Fig. 39. Here the total weight is

We can therefore change this to 0 by chopping some branch of the tree 
so as to change the tree-trunk’s stress from 15 to 5. The trunk supports two 
branches of stresses 8 and 6, and we can alter these to make their Nim-sum 
4 by changing 8 to 2  The stress 8 branch presently supports branches of 
stresses 2,1, and 4 which can be made to have Nim-sum 1 by changing 4 to 2  
Climbing the tree in this way, we eventually discover the winning move 
(which can just as easily be proved to be unique): chop the twig bearing the 
highest apple on the tree!

Proof. We decompose the picture into portions P, (0 <  i <  k) by con
sidering the edges that meet the ground in the identified version. Some of 
these edges, xx, . ...x*, say, support other edges, and the edge x, and its 
load constitute the portion P( (1 <  i ^  k). The portion P0 consists of all 
the other edges. Defining the weight of a portion as the Nim-sum of the 
weights of its edges, we see that the weight of P is the Nim-sum of the weights 
of the P(.

Let P  be the picture obtained from P by chopping a typical edge, and if 
Q is any part of P, let O' be the part of P’ consisting of edges which lay in Q, 
edges which have disappeared being ignored.

Now chopping an edge in P, does not affect loads in P. (j f  i), and so the 
weight w(Pj) is unchanged, while the weight of Pt is replaced by a number 
aXP'j). So for this one move, the picture P behaves like the disjunctive sum 
of the portions P(, and we need only show that a^Pj) is the mex of all the 
numbers w(PJ) obtained by chopping edges in Pr

Now for i £  0  we consider the p ic tu re /5”  formed by the load of x, with 
the upper endpoint of x, taken as its only base-node. See Fig. 44. We can

I5 + 2 I + 2 6 + 2 4 + 2 I + 2 3  + 2 4  =  15 +2 5.

F ig . 44. The portions P, and the definition of 1^
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suppose inductively that co(P,) = mex <u(Pi'X and since each PJ is either 
obtained from some P|' or obtained by chopping x„ we have

co(P} = mex (0,1 +  oA.P,') -  1 +  w(P,),

which proves the desired assertion for i ±  0.
For i as 0, we let P0 be obtained by deleting a typical edge s from P0, 

and C = {p, q, r, s, ...} be the class of edges concyclic with s.
Then we have, by the definition of weight,

oAP'o) = («|P) + 2(s|4) + 2(*lr) + 2--- + 2£2 !•
the final Nim-sum taken over all edges of P0 which are not in C. Since 
(s | P) +  2 (s 19) +  2 • • • has parity opposite to the number of edges in C, we 
see first that oj(P0) 4s m(P0).

Now co(P0) is 0 or 1 according as there are an even number or odd number 
of edges in Pw so we now need only show that when oo(P0) = 1 there is an 
edge s so that cofP'0) =  0. But then P0 has an odd number of edges, and so 
there is an odd number of edges in some concyclic class C, and for this C 
the final Nim-sum in the above formula for <w(P'0) is 0. Now the function 
(x | y) on the edges of C induces a mating on C, taking as the first mated pair a 
pair x, y with maximal (x | y), then deleting these edges and selecting the next 
best mated pair, and so on. If s is the spinster in this mating, then we have 
(s[ x) =  (s | y) for each such pair x,y, and so the Nim-sum (s | p) + 2 (s|g) + 2... 
is also zero, proving the result.

From Figs 43(p) to 43{s) we can read off the matrix of values of ox{y) 
in the set {p, q, r, s, t}, and thence the corresponding matrix of values of

ff*(y)

P 4 r s t P q r s t

p _ 3 4 1 1 P — 1 7 1 1
9 3 - 1 6 8 q 1 - 1 3 15
r 4 1 - 5 5 x r 7 1 - 1 1
1 5 6 5 - 2 s 1 3 1 - 3
r 11 8 7 2 - t 1 15 1 3 -

(*|y)

The first pair is therefore {q,t}, and then the pair {p,r} completes {4, 1} 
to a quartet, leaving s as the spinster. Deleting her, we have Fig. 43(s) whose 
weight is indeed the combined weight of boy, node, girl, and flower.



CHAPTER 14

How to Play Several Games at Once in a Dozen 
Different Ways

"Home, James, and don't spare the horses!"

Since we are still concerned with impartial games, in this chapter we shall 
call our players Arthur and Bertha rather than Left and Right Now there are 
many different ways in which Arthur and Bertha can show off by playing 
several games against each other simultaneously, so as to make a single com
pound game. Throughout much of this book we have been concerned with 
the disjunctive compound, when the compound move is defined to be a move 
in just one of the component games. Tn this chapter, we shall add some other 
systems of rules, so as to make in all a round dozen of different ways of 
playing several games at once.

Rules for moving in the compound game
(1) The selective (SOME) rule:

select some of the component games, and then make a legal move in 
each game you have selected.

(2) The conjunctive (ALL) rule:
make a legal move in all the component games that have not yet ended.

(3) The disjunctive (ONE) rule:
make a legal move in just one of the component games.

Rules for ending the compound game
(a) The long rule: the component game ends only when all of the component 

games have ended.
(b) The short rule: The compound game ends as soon as any one of the 

component games has ended.
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Rules for deciding who wins the compound game 
(+ ) The normal rule: the last player able to move is the winner.
( —) The misire rule: the last player able to move is the loser.

There is a very definite sense in which the normal rule is more natural than 
the misere rule, since it seems more sensible to agree that a player unable to 
move loses than that he wins.

Since we have 3 rules for moving, 2 for ending, and 2 for deciding who 
wins, we have indeed 3 x 2 x 2 = 12 ways of playing several games at 
once, as we promised. For selective and disjunctive compounds, we should 
be able to move as long as any component remains unfinished, and so we 
should prefer the long ending rule, but conjunctive compounds should 
naturally end when any component does, and so for them the short ending 
rule is more natural. So we name the possibilities as follows:

G V W V K . . . ,  the selective compound (long ending rule)
G V H  V X . . . ,  the shortened selective compound (short rule)
G A H  A K . . . ,  the conjunctive compound (short rule)
G A H A K . . . ,  the continued conjunctive compound (long rule)
G + H + K . . . ,  the disjunctive compound (long rule)
G ®H ® K . . . ,  the diminished disjunctive compound (short rule) 

each with either normal or misere play.

HOW CAN WE FIND OUT WHO HAS THE WINNING STRATEGY?

In any compound game of any of these types, we know that just one of the 
two players has a winning strategy, so that the outcome of the compound is 
determined in some way from the structure of the component games. Now 
just how much do we need to know about these component games in order 
to be able to compute the outcome of the compound? We know that for 
normal disjunctive compounds the answer to this question is “precisely the 
Grundy number”, and that for misdre disjunctive compounds the answer is 
much more complicated Since neither of these answers is exactly what we 
should expect, the question cannot be entirely trivial. In general, we might 
expect some kind of “number” for each component, together with a rule for 
“adding” these numbers.

Recall the definition of the normal and mis£re outcomes o+(G) and o“(G)— 
these are the symbols N  or P according as it is the Next or Previous player 
who has the winning strategy from G (in respectively normal and misdre 
play).
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Professor C. A. B. Smith has analysed most of these compounds in a very 
entertaining paper [J. Comb. Theory 1 (1966) 51-81], and for the most part 
we have followed his analysis and names for the compounds. But some of 
the compounds are not analysed by Smith, and in particular, the solution of 
the continued conjunctive compound seems to be new. We omit the easy 
proofs.

WHO WINS THE SELECTIVE COMPOUND?

After playing a few selective compounds, Arthur and Bertha soon found 
the rule for normal play—you simply make good moves in all the games you 
can. In other words:

The normal outcome of GV WV K .. .  is P if and only if the normal outcomes 
of G, H, K , . . .  are all P.

It took them a little longer to work out the rule for mis£re play:

Unless all but one of the components have ended, the mis&re outcome of 
G V H V K .. .  is the same as its normal outcome. Otherwise its misire 
outcome is the same as the misere outcome of the only remaining component.

WHO WINS THE SHORTENED SELECTIVE COMPOUND?

Here, if any component has ended, so has the whole game, by definition, 
and its outcome is P in normal play, N  in misere play. Otherwise:

The normal outcome of GV H V  K .. .  is P if and only if the normal outcomes 
of G, H, K , . ..  are all P,

and similarly

The misire outcome of G V  H V  K .. .  is P if and only if the misere outcomes 
of G, H ,K , . . . a r e  all P.

So again we need only know who wins the individual components, and 
which components have ended. In fact the rule is even simpler than for the 
ordinary selective compound, since the rule for misere play does not now 
need the outcomes under normal play.

WHO WINS THE CONJUNCTIVE COMPOUND?

When Arthur knows that he can win a game he is playing with Bertha, 
he usually tries to beat her as quickly as possible, so that he can boast of 
having won the game in very few moves. Bertha conversely tries to postpone 
her defeat as long as possible. Now when a game is played in this way between



intelligent players (the winner trying to win quickly and the loser to lose 
slowly), it always lasts for exactly the same number of moves, and this num
ber is called the remoteness of the game. Professor Steinhaus, who invented 
this concept, gave rules for calculating the remotenesses of the various posi
tions of a game under normal play, as follows:

(i) If G has an option of even remoteness, the remoteness of G is one more 
than the minimal even remoteness of any option of G.

(ii) If not, but G has options of odd remoteness, then the remoteness of G 
is one more than the maximal odd remoteness of any option of G.

(iii) The remoteness of an ended position is zero.

For normal play the P-positions are those of even remoteness, so rule (i) 
corresponds to the winner’s aim of shortening the game, rule (ii) to the loser’s 
of lengthening it, and rule (iii) to the fact that a game with no possible move 
lasts for zero time. We write P +(G) for the remoteness of G under normal play.

There are similar rules for remotenesses under misdre play, but since then 
P-positions have odd remoteness, we must interchange the words odd and 
even in the above rules. The remoteness under misire play we call R~(G).

REMOTENESS OF CONJUNCTIVE COMPOUNDS

It soon dawned on Arthur and Bertha that when they played conjunctive 
compounds the game only lasted as long as the shortest component, for the 
winner of that component could always exercise delaying tactics in the 
others. In other words:

The remoteness o f a conjunctive compound is the same as the minimal
remoteness o f any of the component games.

This applies to both the normal and misdre remotenesses. So to work out 
who wins a conjunctive compound, we need only know the appropriate 
remotenesses of the individual components, and we can then see whether the 
smallest one of these is even or odd.

WHO WINS THE CONTINUED CONJUNCTIVE COMPOUND?

Bertha’s winning tactics are subtly different from Arthur’s. When she 
knows that she can win, she enjoys prolonging Arthur’s agony, and tries to 
make the game last as long as possible! Arthur, conversely, prefers to end the 
game quickly, since he hates to play a game he cannot w ia Now when a game 
is played in this way between intelligent players (the winner trying to win 
slowly and the loser to lose quickly), the number of moves it lasts is called the
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suspense number of the game. Rules for calculating this number for normal 
play are as follows:

(i) If G has an option of even suspense number, the suspense of G is one 
more than the maximal even suspense number of any option of G.

(ii) If not, but G has an option of odd suspense number, the suspense of 
G is one more than the minimal odd suspense number of any option 
of G.

(iii) The suspense number of an ended position is zero.

In other words, we interchange the words minimal and maximal in Pro
fessor Steinhaus’s rules. For calculating suspense numbers in misgre play 
we would also interchange even and odd again. We shall use S+(G) and 
S“(G) for the suspense numbers of G under respectively normal and misgre 
play.

SUSPENSE NUMBERS OF CONTINUED CONJUNCTIVE 
COMPOUNDS

Arthur dislikes playing continued conjunctive compounds, since they last 
so long, and Bertha usually wins. The reason is that she worked out the rule 
by analogy with that for the ordinary conjunctive compounds:

The suspense number of a continued conjunctive compound is the same as the
maximal suspense number of any of the component games.

Once again this applies in both normal and misgre play. The idea is that 
the winner of the game with largest suspense number can certainly delay the 
end of the compound until this particular game ends, and during this time 
she can have disposed of any of the components she is forced to lose. So to 
find out who wins a continued conjunctive compound, we need only know 
the suspense numbers of the component games, and decide whether the 
largest of these is even or odd.

WHO WINS THE DISJUNCTIVE COMPOUND?

We already know how to work out the outcome of a disjunctive compound 
under normal play. For completeness we repeat it here:

The Grundy number of G + H + K . . .  is the Nim-sum of the Grundy
numbers of the component games G ,H ,K , . . . .  The normal outcome is P
if and only if the Grundy number is 0.

We also repeat the rule for computing Grundy numbers.



(i) The Grundy number of G is the least number (from 0,1, 2 ,...)  which is 
not the Grundy number of any option of G.

In particular
(ii) The Grundy number of any ended position is zero.

We call the Grundy number so defined the normal Grundy number, G+(G), 
and we have also defined the misire Grundy number G~{G\ by replacing 
zero by one in rule (ii), and so making rule (i) apply only to games that have 
not yet ended. For complicated games the misere and normal Grundy num
bers can be quite unrelated. But the particular game of Nim has the property 
that in every position either the two Grundy numbers are equal or one of 
them is 0 and the other is 1. If this also holds for all positions of some game 
G, we call G tame.

The disjunctive compound G + H + K . . .  o f any number o f tame games is
tame, and then the two Grundy numbers of G + H + K .. .  are equal if
and only if the two Grundy numbersiof some one o fG ,H ,K , . . .  are equal.

So to work out who wins a disjunctive compound of tame games we need 
only know the two Grundy numbers (normal and mis&re) for each component 
From the normal Grundy numbers of the components we Nim-add to find 
the normal Grundy number of the compound The misfire Grundy number 
is either the same as this, or the two numbers are 0 and 1, and the latter 
possibility will only happen for the compound when it happens for every 
component Since the misire outcome of a game is P if and only if the mis£re 
Grundy number is 0, the rule suffices to find misire outcomes of compounds 
of tame games.

Another way of remembering the rule is to note that for any tame game 
there is a Nim-position with the same pair of Grundy numbers. We can then 
replace each component by the appropriate Nim-position (which might 
well have more than one heap) and pretend we are playing misere Nim. But 
for non-tame games we must read Chapter 12.

WHO WINS THE DIMINISHED DISJUNCTIVE COMPOUND?

Both the rules for diminished disjunctive compounds are easier than the 
misere rule for ordinary disjunctives. The idea is that we must pay special 
attention to positions near the end of the game. What we do is foreclose 
the game by making a position illegal if the game has just ended or can be 
ended by a single winning move. Modem Chess is in fact the foreclosed 
version of primitive Chess, in which the game ended when the loser’s King 
was captured In modem Chess, a position in which the King has been 
captured is illegal, as is also any position in which the King can be captured
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on the next move, and so a game ends when one of the Kings is checkmated.
Of course the result of foreclosing a game in mis6re play will probably 

not be the same as that of foreclosing it under normal play, since the notions 
of winning moves differ. We now define the (normal and misere) foreclosed 
Grundy numbers, F +(G) and F~(G), to be the normal Grundy numbers of 
the two foreclosed versions of G. Of course these numbers will not be defined 
if G has already ended or can be ended in one winning legal move, for then 
the foreclosed game has no legal positions and will not exist But for such 
games we shall still need to know the outcome. Then the rule for diminished 
disjunctive compounds is:

The foreclosed Grundy number of G @H © K .. .  is defined if and only if 
those o f G, H, K , . . .  are all defined, and is then their Nim-sum. The outcome 
is P if and only if the foreclosed Grundy number is 0, or some component has 
outcome P but undefined foreclosed Grundy number.

In other words, if one of the components has ended, or can be ended in a 
single winning move, the same is true of the compound. Otherwise the fore
closed compound is the same as the normal play disjunctive compound of 
foreclosed components. Of course, the foreclosed Grundy numbers we use 
are the normal ones for normal play, and the misere ones for misere play.

In the
, . shortened . .. continued .. . diminished

select,ve selective COnjunCtlVe conjunctive d,SJunctlve disjunctive
compound,

G V  H . . .  G V  H . . .  G A  H . . .  G A  H . . .  G + H . . .  G © W ...

of a number of games G, / / , . . . ,  we move in
some some all all one one

of those components which have not yet ended, and the game ends as soon as 
each any any each each any

of the component games has ended. The solution for normal play uses
o* o+, end? R + S + G+ F * ,o*

while that for misere play uses
o+, o ',  end? o~ R~ S~ G*, G~, tame? F~,o~.

F ig . 45. Tactics for a dozen different ways of playing several games at once.

It will be seen from Fig. 45 that in eleven of the twelve cases the solution 
really involves nothing worse than computing a simple numerical function 
for each component, from which the outcome of the compound can be easily



calculated. The same is true for mis&re play disjunctive compounds only 
with the condition of tameness. If his games are not tame, the innocent 
reader would be wise to refuse to play them, but a more foolhardy reader 
will be eager to use the more difficult theory of Chapter 12.
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VARIATIONS ON THE THEME

In this chapter we have supposed that the games are impartial in the sense 
that any move which is legal for one player is also legal for the other. Most of 
this book is the result of the attempt to remove this restriction for the case of 
normal play disjunctive compounds. It is removed for the normal play selec
tive compounds in Chapter 10 of Winning Ways, which also discusses some 
other variations. Of course we can always regard any game as impartial by 
“building in” any restrictions on possible moves into the position, so that in 
Chess, for example, each position would be regarded as carrying with it the 
colour of the next piece to be moved. But this has the unfortunate effect that 
if Chess were a component of some compound game a player might find him
self moving differently coloured pieces at different times. For the conjunctive 
compounds, such problems do not arise, since the move in each component 
automatically alternates.

We have also supposed that each game has only a Finite number of positions 
(i.e., is a short game). It is perfectly possible to replace this by the condition 
used elsewhere in the book that the game lasts for a finite, but possibly un
bounded number of moves, and the theories are not much altered. The curious 
reader will find details for some of the cases in Winning Ways or Professor 
Smith’s original paper. What usually happens is that the numerical functions 
involved are allowed to take new values «> or infinite ordinal numbers, and the 
finite theory generalises easily.

If instead we allow a game to proceed indefinitely, an infinitely long play 
being counted as a draw, then the theories become rather dull except for the 
disjunctive compounds, which we have already considered in Chapter 11. 
Other conventions which permit draws can usually be converted into this 
one by adding new legal moves from drawn positions to themselves.

We can modify the rules about who wins and who loses, by marking the 
ended positions of individual components with the corresponding letters 
N  and P. The interesting cases are the disjunctive and diminished disjunctive 
compounds, since in other cases several games may end simultaneously, 
and there is no obvious rule for deciding who wins the compound. If we 
define the winner of a diminished disjunctive compound to be the winner 
of the first component to end, then our rules will still apply, if we use the
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appropriate kind of foreclosed Grundy number. On the other hand, it 
seems clear that the theory for ordinary disjunctive compounds so generalised 
is much harder than the misdre play theory of Chapter 12.

Finally, we can consider new systems of rules for deciding what counts 
as a move in the compound game. For instance, we might demand a move in 
just two components, or alternatively a move in any number strictly less 
than five. I have not been able to give a complete theory for any new rule 
of this type, although there is still room for hope in the case when we require 
a move in any odd number of components. Even in the absence of a general 
theory, one can attack the case when each component is a Nim-heap, and 
often we find some curious results. We discuss only one.

Moore’s game '‘Nimkn
Here we have a number of heaps of counters, and the move is to remove 

some counters from any number up to k of heaps. Ordinary Nim is the 
particular case Ninij. There is a remarkable strategy in the general case:

Mentally split each heap into heaps whose sizes are distinct powers o f 2.
Then the position is P if and only if the numbers o f heaps o f each size are all
divisible by k +  1, after this alteration.

In other words, we write the numbers in the binary notation, but then 
add these numbers without carry, and in the scale of k + 1, and the position 
is F if and only if the resulting “number” is zero!

PLAYING SEVERAL DIFFERENT GAMES IN SEVERAL 
DIFFERENT WAYS AT ONCE

It is possible to play a selective compound of games which are themselves 
conjunctive compounds (say) of smaller games. Is there any way of telling 
how to win such compounded compounds? The only easy cases are those 
with selective compounds outermost (since their outcomes depend only 
on the outcomes of individual components), and certain combinations of 
selective and shortened selectives with conjunctives and continued con
junctives.

The idea is that in normal play we can compute the remoteness or suspense 
number of a selective or shortened selective compound from those of its 
components, according to the tables in Figs 46 and 47.

For misere play, there is no similar theory for ordinary selective com
pounds, but for the shortened selectives we have Fig. 48.

To justify these tables, note that a sensible loser of such a compound will 
try to move in just one component if he wants to drag things out, and in all 
components he can if he wants to end things quickly. So the remoteness of
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R*(G V  H) S+(G V H)
0 1 2 3 4 5 6 7
0 112 3
1 113 3
2 3 2 3
3 3 3 3
4 5 4 5
5 5 5 5
6 7 6 7 6 7
7 7 7 7 7 7

Fio. 46.

R+(CV H) S*(G V H)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 0 1 2 3 4 5 6 7 2 0 1 2 3 2 3 2 3
3 0 1 3 3 5 5 7 7 3 0 1 3 3 3 3 3 3
4 0 1 4 5 6 7 4 0 1 2 3 4 5 4 5
5 0 1 5 5 7 7 5 0 1 3 3 5 5 5 5
6 0 1 6 7 6 0 1 2 3 4 5 p 7
7 0 1 7 7 7 0 1 3 3 5 5 17 7

Fio. 47.

R '(G V « )
0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 2 4 4 6 6
3 0 3 4 5 6
4 0 4 4 6 6
5 0 5 6
6 0 6 6

S~(G V H)
0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0
1 0 1 2 1 2  1 2
2 0 2 2 2 2 2 2
3 0 1 2 3 4 3 4
4 0 2 2 4 4 4 4
5 0 1 2 3 4[5"6
6 0 2 2 4 4 16 6

Fio. 48.
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the compound will be roughly the sum of the individual remotenesses, and 
the suspense function roughly the maximum for an ordinary selective com
pound and the minimum for a shortened selective compound. The slight 
divergences from this are due to the special conditions that prevail very near 
the beginning or end of the game. Since the misdre outcome for ordinary 
selective compounds depends on both the normal and misere outcomes of 
the components, there can be no exactly similar rule for that case.

ALL THE KING’S HORSES, ETC.

There are twelve forms of this game. The game is played on a large board 
ruled into squares, the two by two square at the top left hand corner being 
called home. The pieces Rre called horses and move like the knights in Chess, 
except that only the four moves in the directions shown in Fig. 49 are allowed, 
and as many knights as we wish may occupy the same square.

In the version:

All the King's Horses, last home loses 
The player whose turn it is to move must move every horse that is not yet 

home, and the last player able to move in this way is the loser. It is therefore 
a continued conjunctive compound with misere play, the component games 
corresponding to the individual horses. The twelve versions range in this 
way from

Some o f the King's Horses, first home wins 
(Normal play shortened selective), to

One o f the King's Horses, last home loses 
(Misere play disjunctive).
We can give the winning strategies by giving tables showing the appropriate
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P P  P P  P P
P P  P P -------P P

P P  P P  P P
P P  P P  P P

P P  P P
P P  P P 0 +

P P
P P

(a)

 P P P — P P P — P P P
----------- p  p  _ -------- p
p --------------------------------------------
P P — P — P — P — P
P  P — P — P
 P — P — P
P  P — P
P P — P — P
P  P
 P o
p -----
p p 
p

(b)
F ig . 50.

functions of each square on the board, as we do on the next few pages. It 
turns out that the last version mentioned is not a tame game, so we do the 
best we can and tabulate merely the G*-values of the various positions, as 
in Chapter 12 To make our descriptions of the strategies easier, we shall 
suppose that every horse is removed from the board as soon as it reaches 
home.

Some o f the King's Horses (Fig 50)
If first or last home wins, your move should leave all remaining horses in 

P positions in the o+ diagram (Fig. 50(a)). If first home loses, the move should 
leave all horses in P positions in the o ' diagram (Fig 50(b)). If the last home 
loses, all horses should be in P positions in the o+ diagram until there is only

5 5 
5

0 0 
0 0 
1 2 
1 3
3 2
4 2 
3 4

8 7 
6

(a) (b)
F ig . 51.



ALL THE KING’S HORSES, ETC. 185

one left, which should be put into a P position in the o~ diagram. We have 
written— for N in these diagrams so as to make the P positions obvious.

All of the King’s horses (Figs. 51, 52)
If first home wins, move so as to make the least number on the R + diagram 

(Fig. 51(a)) even—if first home loses, move so as to make the least number on 
the R~ diagram (Fig. 51(b)) odd. We have drawn lines partitioning the 
entries in these diagrams so as to make the patterns clearer. The pattern in 
the R~ diagram is easier to follow if we read the entries in each row in blocks 
of four. Similar comments apply to the S+ and S~ diagrams.

If last home wins, move so as to make the greatest number on the S+ 
diagram (Fig. 52(a)) even; if last home loses, the greatest number on the S~ 
diagram (Fig. 52(b)) should be odd.

(a)

6 
7 
7 
9

F ig . 52.

0
0
2
1
2
2
4
3
4 
4 
6

5 5 8 
7 6 6 

6 8 
8 8 
7

1 1 3 2 3 3 5 4 5 5 7 6 7 7 9
2 1 2 2 4 3 4 4 6 5 6 6 8 7

4 2 4 4 6 4 6 6 8 6 8 8
6 7 
9

(b)

One of the King’s Horses (Figs 53, 54)
If first home wins, move so that the Nim-sum of the numbers in the F + 

diagram (Fig. 53(a)) is zero. If first home loses, make the Nim-sum of the 
numbers in the F~ diagram (Fig. 53(b)) zero.

If last home wins, or last home loses, we have the disjunctive compound 
as discussed in the rest of the book. It happens that the games are not tame, 
so that we have no general theory for the last home loses case. The reader 
who wishes to use the corresponding table will therefore need to have under
stood the appropriate parts of Chapter 12.

If last home wins, we move so that the Nim-sum of the numbers in the 
G * diagram (Fig. 54(a)) is zero.

Fig. 54(b) gives a partial strategy for the game when the last home loses. 
See Chapter 12 for an explanation of the ideas involved.
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CHAPTER 15

Ups, Downs, and Bynumbers
“Play up! Play up! 

and play the game!"
Sir Henry John Newbolt 

Vital Lampada.

In this chapter, we return to our main theme of partizan games. In particular, 
we wish to study various natural functions from games to games. We introduce 
one important kind of function by discussing the theory of a still more general 
form of Hackenbush.

HACKENBUSH HOTCHPOTCH

We have already met Hackenbush restrained (in Chapter 8), and un
restrained (in Chapter 13). In the restrained form, each edge could be chopped 
only by its owner, and in the unrestrained form, each edge could be chopped 
by either player.

In Hackenbush Hotchpotch, there are three kinds of edges, black {|)  which 
may only be chopped by Left, white ([]), which may only be chopped by 
Right, and plain ( | ), which may be chopped by either. The rules are otherwise 
as in the earlier games, which are particular cases. Moreover, the value of 
any position which has only plain edges may be found by applying the theory 
of Chapter 13, and the value of many positions with no plain edges by 
applying the ideas of Chapter 8.

Other values can be found in the usual way. So for instance, we have

A =  {./_> A l/ -}  = {i ,*|i } = i |i = i + *.

Now seems the appropriate moment to introduce an abbreviating convention 
for such sums—if x is a number, and *n a Nim-heap, we write x*n for the 
sum x +  *n. In the case n =  1, we abbreviate *n to *, and so we write x* for

iss
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x +  *. This convention will be extended later in the chapter. So we have the 
equation _A_ = 1*.

In a similar way, we find

(The equation {*, 0 10} = T + * was not supposed to be obvious—it can 
be verified by computing the simplest form of t  + *.) The abbreviations we 
here introduce are meant to apply to particular games only, so that in 
general 2G will still mean G +  G, rather than 2 +  G.

There is usually no risk of confusion between these two meanings (very 
few people would interpret 2 | as a synonym for IX but when there is, we 
write 2.G  for the meaning G +  G. Thus 2 .\  does mean 1, whereas 2\ means 
2 +  2- Our convention should be regarded as extending the usual notation 
for fractions, and we shall observe similar rules.

Now suppose we attach a picture of value x (not necessarily a number) at 
some point of a Hotchpotch picture P, obtaining a picture P(xX say. How 
does the value of P(x) depend on x? In Fig. 55 we define three functions 
/ :  x, g : x, h : x  in this way.

Let us see how to define the same functions arithmetically. We have the 
equation

and so /  :x is the function defined inductively in terms of the simpler functions 
g:x and h:x by the formula

In a similar way, g:x = {g:x L, 0 | g:x*}, and our remaining function h:x 
is defined by h:x  =  {h:xL, 0 1 /t:x*, 0}. How do these functions vary with x?

We call a function f . x  a wop function (weakly order-preserving) if we have 
the implication x <  y  implies f : x ^ f : y ,  and a sop (strictly order-preserving) 
function if x <  y  happens if and only if f : x  <  f  :y.

F ig . 55. Some Hotchpotch functions.

f : x  =  { f  :^- ,g.x,  h:x \ f  :x*, g:x}.

T h e o r e m  87. Let there be given any number of wop functions f L:x and
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/ R:x, and define a new function f ' . x b y

f : x  = f L:x | f .x f i ,  f K:x).

Then f  :x is a sop Junction.

Proof. We play the game f : x  -  f : y .  It is easy to see that any player who 
can win x — y  can win f ' . x  — f : y  in the same circumstances.

As a matter of notation, we write / : x  =  {/L:|/j,:}  :x for a function 
defined in this way. If G is a game, we also use G for the function which 
identically takes the value G, and omit the colon.

Thus our examples were f : x  = {g:, h:\g:}:x,  0 :x =  {O|}:x, and 
h:x — {010}:x. Since the identically zero function is wop, the functions 
/ : ,  g:, h: are all sop.

Notice that the value of a wop or sop function /  :x depends only on the 
value of x  and not on its form, for if x =  y, then x >  y  and x <  y, so f : x  >  
f : y  and f : x  <  /:>v so that f : x = f  :y. Notice also that after the discussion 
of Hackenbush in Chapter 13, we can regard the functions defined here as 
generalisations of animating functions.

DIGITAL DELETIONS

This game is played with a string of decimal digits, perhaps the string

8315553613086720000.

It is an impartial game, and the player to move may either d e c r e a s e  any 
digit, leaving the others unaltered, or d e l e t e  any digit 0  and all following 
digits of the string.

It follows from the preceding theory that if we precede some string of value 
x with a digit n, the value of the resulting string is a sop function f m:x. For 
instance

f i ' x  ~  { f s "*» f \ • ■ * > f o ' x  = !yo:jr-0}-

are the inductive definitions of / 3 and f 0. Since the values of impartial 
games are Nim-heaps *N, we need only tabulate the functions /„ (Fig. 56).

In this table, we have written f m:x  = y, when we really mean that f t :*x — *y. 
Now let us see what move to make from the string 314159. This string has 
Grundy number f i :(f1:(f4:(fl '.(f5:(f9:0))))), since it is followed by the 
empty sequence, whose Grundy number is 0.

We evaluate this as 12:

12<— - io<—— 10< 7 < f  7 9 < -  - - 0
f s  f \  j *  J  i  h  h
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Now we want to move to some position with Grundy number 0, so we 
“pretend” the answer is 0, and work backwards:

0 2 2 5 5 0 8
J  3  h  J 4  / 1 J i  h

We can now make our dreams come true by finding what changes in the 
individual digits enable us to pass from one of these chains to the other. 
Most of these require digits to be increased, but the last one is legal, since

12 < -

0 **

it requires us to replace f 9 by f v  So the only winning move here is to move 
to 314151. The reader might like to verify that the position

8315553613086720000

yields just two winning moves—to decrease 7 to 6, or delete the last two 
zeros.

The inductive definitions of the fm tell us that each entry of the table is the 
mex of the numbers above and to the left of it, except that 0 is not allowed as 
an entry in the f 0 line. We can deduce that the entries in each line are ultimately 
arithmetico-periodic, so that the game has in principle a complete theory. 
Perhaps some reader will find out exactly when the periodicity occurs. But 
apart from the formulae / 0:x = x +  1, / , :x  =  x, f 2:x = x +  3 2, and 
/ 3:(x +  9) = / 3:x +  9 for x ^  3, there seem to be no easy answers.

ORDINAL ADDITION OF GAMES 
A particularly important case of these inductively defined functions is 

when each of the f L and f R is a constant function. So the function

/•.x =  {A, B, C ,. . .*| D,E ,F , . . . } :x

(when A,B ,C  D,E,F  are any games) is inductively defined by

/ :x  = { A ,B ,C , . . . , f : x L \D,E,F ........ /:x*} .

In other words, we obtain the tree (rf the game {A,B, C, . . . \D ,  E, F, . . . } : x  
by adding new moves for Left to A, B, C , . . .  and for Right to D, E, F , . . .  at 
every position of the game x.

It follows from the previous discussion that {A , B, C, . . . \D,  E, F, . . . } :x  
is a sop function of x, and so in particular, that it depends only on the value
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of the game x, and not on its form. We can also regard it as a function of the 
game {A, B, C, . . .  \ D, E, F , . . .},  but it then depends in part on the form of 
this game, and not only its value.

For instance, consider the games 0 =  { | }, and (p =  { — 1 | 1}. These games 
have equal value. But the games { | }: 1 and { — 1 11}: 1 do no t In fact, 
{ | }: 1 is the game obtained from 1 by adding no new moves at any position— 
namely 1, whereas {— 1 11}: 1 is obtained by adding new moves (to — 1 for 
Left, 1 for Right) at each node of the tree for 1, giving the game

= { - l , - l | l | | l }  = { - l , 0 | l }  = *.

However, if the game G = {A, B, C, . . .  | D, E, F, . . .}  is supposed to have no 
reversible moves, we can define a function depending only on the value of 
G by

G:X = {A,B ,C , . . . |D ,£ ,F ,

since it turns out that if also H  has no reversible moves, and H  — G, then 
H:X = G:X.  Since every game G has a form without reversible moves, the 
function G:X is defined for all G and X,  and we call it the ordinal sum of G 
and X.

As an example, we consider the ordinal sum \  :x, and restrict ourselves at 
first to the case when x is a number. Since ^ =  {01 1} without reversible 
moves, \ : x  is defined by adding new options 0 for Left and 1 for Right at 
every position of x. In other words, we tell the creation story over again, but 
examine only the space between 0 and 1.

So for instance the simplest number bom here is so *:0 =  The simplest 
numbers to the left and right of this (but still between 0 and 1) are J and J, 
so — 1 = J, ^:1 =  f. Similarly, we find that for x =  2, 3, . . . » co, the
values of £:x are f, . . . ,  1 -  1/co.

In general, to see what x:y  means when x and y are both numbers, we 
refer to the tree in chapter 0, or equivalently, to the so-called sign-expansions 
used in chapter 3. We get from 0 tox:y in the tree by starting at the point x 
and making exactly those moves along the tree which would get us from 0 to y. 
For example, we get from 0 to J by moving right, left, right, and so we get 
from 2 to 2*4 by moving right, left, right again, arriving at Similarly, co 
steps leftward from \  get us to 1/co, and so — co = 1/co. In general, the 
sign-expansion of x:y  is that of x followed by that of y.

When x is a number and G is an arbitrary game, we can compute x:G as 
follows. Play G until we get to its stopping positions (Chapter 9). In the tree of 
G, replace each stopping position y  by the ordinal sum x:y. So for example 
i : ±  1 ~  {2: 1 1 a: 1} =  4 Ii-
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When X  is not a number, the behaviour of X : Y is more complicated As a 
general rule, we can say that we expect its value to be “very near” that of X,  
and this expectation is given a more formal meaning by Simon Norton’s 
theorem that X  and X : Y have the same order-relations with all games G 
not involving X  (as a position). We shall give Norton’s proof of this in the 
next chapter, and then deduce, following Norton, that X: Y  is free from 
reversible moves if X  and Y are, and so that we have the associative law 
(X:Y) :Z  =  X:(Y:Z).

The particular case X  =  * gives rise to a family of games that arise very 
frequently. The same games can be defined in many ways, and the order- 
relations in the group they generate together with the Nim-heaps *n are 
completely known. For positive numbers x, and more generally for*games all 
of whose stopping positions are positive numbers, we define the game Tx 
(pronounced “up-x”) by the formula

* +  Tx =  {0 |0 } :x  =  *:x.

It turns out that the same games can be defined by the formulae

Tx =  { |* } :x  =  {* | *}:x

under the same conditions on x. The negative of Tx is called fx  (down-x). 
The following theorem, which we do not prove, gives the complete structure 
of the group generated by the Tx and the *n, for numbers x.

T h e o r e m  8 8 . Let X  be a finite sum of terms Tx and | y ,  in which all the 
numbers x  and y are positive, and no number x occurs also as a y (for then we 
could cancel). Then X  is positive if and only if either the number of Tx terms 
exceeds the number of jy  terms, or these numbers are equal, and the least of 
the numbers x  and y  is ay . The game X  + * is positive if and only if  X  +TOn 
is positive, where On temporarily denotes any number bigger than all the x  and 
y. The game X  +  •n, with n >  2, is positive only if  the number o f Tx terms 
exceeds the number o f jy  terms.

It is often convenient, in seeing what this theorem tells us about the size 
of the game Tx, to use the following symbolic formula:

Tx = ?On(l -  H

where T* denotes “the xth power of T". If we suppose, as is natural, that 
whenever x >  y >  0, the xth power of T is infinitesimal with respect to the 
yth power, and suppose Tx <  TOn for all x, this formula gives us the right 
order relations. Note that when we put x — 1, it yields the symbolic formula

TOn = T T f  =  t  +  |2  +  |3 +  • • •
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(the infinite series on the right side of this, is, like the whole equation, purely 
formal, and should best be thought of as extending over all ordinal numbers 
a).

So the games Tx, for 1 < x < On, are very close to t, being between T and 
T + T2 + T3 + —  For integral x, they are the partial sums of this series, 
thus

T2 = T + T2, T3 = T + T2 + T3,. . . .
The game t2 can be defined as {0||*}, and T3 as {0|j,2*}, etc. So that we can 
write i 2, i 3, ... for their negatives, we pronounce these games “up-second”, 
“up-third”, etc., and the negatives similarly “down-second”, “down-third”, 

and so on.
If we adopt these conventions, Theorem 88 tells us that the game * is 

confused with all sums between jOn and tOn, greater than all smaller sums, 
and less than all larger ones. Note that we need not enquire about the critical 
values jOn and tOn themselves, since these are not real games, but purely 
formal symbols. The theorem also tells us that for n > 2, *n is confused 
with all sums with as many up terms as down ones, but not with any other 
sums—an elegant way of putting this is that such a *n is confused with a 
sum X  if and only if * is confused with X  +  X.

SHRINKING RECTANGLES
In this game, played with a number of rectangles of integer sides, Left may 

decrease the breadth of any rectangle, and Right the height. A rectangle 
whose breadth or height is decreased to zero disappears. What are the values?

Here since either player may shrink his coordinate to zero, the moves to 
0 are always available from every position in the game corresponding to a 
single rectangle. So such positions have the form *:x for some x, and when 
we try to tabulate them, it is obvious that a rectangle of breadth b and height 
h has value *:(b — h) which in our standard notation is * + T(b — h). So 
Theorem 88 can be used to give a complete analysis of this game.

(Note. We define T( —x) = — Tx = jx for all x for which Tx is defined.)

THE GAMES fix, (3.T)x

It is sometimes convenient to define .
fix = {|T*}:x (3.T)x = {| ft *}: x,

and so on. The abbreviations T*. ft*, ... mean T + *, T + T + *, ... ,  and
ft*, for instance, is pronounced “double-up-star”. These definitions are
equivalent to  ̂ ,

ftx* = {|T}:x, (3.T)x* = {| ft}: x,...
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for all x whose stopping positions are all positive. When x  is a number, we 
have fix =  t  +  Tx, (3.t)x =  T +  T +  Tx, etc., provided x >  1, while for 
numbers x  with 0 < x < 1, ftx behaves like T +  Tx+, where x + behaves as a 
number less than 1, but greater than all such numbers which appear in terms 
Ty. Similarly (3.T)x behaves like a sum T +  T +  Tx++, where x ++ =  x for 
x >  1, but we have y+ <  x ++ <  1 for all y+, if x <  1, and so on. These 
observations enable us to extend Theorem 88 to cover sums and differences 
of terms fix, (3.T)x, etc.

Thus
<1+ T* <  fl +  TJ <  T + f»J < T +  <  (3.T)£ <  3.T = T +  T + T.

In general, sums of these games with each other, with terms *n, and with 
numbers, are written by juxtaposition, thus

3|T2i3ff^*5 means 3 +  \  +  T2 +  j.3 +  ffj^ +  *5.

Tl, 111, (3. T)1 are written simply T, ft, 3. T, and represent the sums
U  +  U  + T +  T.

More generally, we use the symbol h for n . T = T +  T +  . . .  +  T, and fix 
with the obvious meaning extending that of Tx, fl x, (3. T)x.

To see how these games arise in “real life”, we consider yet another example.

THE TROMINO GAME

This game is played in a finite strip of squares. Left has an infinite supply 
of black straight trominoes (i.e. 3 x 1 rectangles), and Right an infinite supply 
of white ones. Initially, a black tromino is placed at one end of the strip, 
and a white one at the other. Then the two players play alternately, each 
placing one of his trominoes somewhere in the strip (so as exactly to cover 
three empty squares) subject to the condition that trominoes of the same 
colour may not touch.

The values can be worked out completely, with some patience. (Richard 
K. Guy and I once had such patience!) It turns out that they have a curious 
kind of arithmetico-geometric ultimate periodicity with period 13, incre
ment *, and multiplier Figure 57 gives the values—we tabulate for each n, 
the value of a strip of n squares bounded at both ends by white trominoes 
(the value when both ends are bounded by black trominoes being the negative 
of this), and the value when the ends are bounded by trominoes of opposite 
colours. There is an easy argument which shows the latter kind of value must 
always have the form *n.

Ultimately, when n is increased by 13, * is added to each entry, and the 
argument of each fl is multiplied by The arrows indicate exceptions to the 
ultimate behaviour, which all affect the ww column only.
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ww w b ww w b ww wb

-  0 — 0 13 ! * * 26 r 0
-  1 0 0 - 1 4 * * 27 t 0

2 0 0 15 * • 28 0 0
-  3 1 0 16 ft* * 29 ft}

ft}*

0
-  4 1 • 17 ft} 0 30 *

5 * * 18 0 0 31 * *
— 6 * • 19 t 0 32 t* *

7 t* * 20 T 0 33 r* •
8 1

2 •2 21 ft}* *3 34 ft} •2
9 t 0 22 T* • 35 t 0

-1 0 0 0 23 T* • 36 t 0
11 T 0 24 T* • 37 t 0
12 ft *3 25 fti* *2 38 *3

F ig . 57. Values in the tromino game.

THE TROMINO GAME WITH FREE ENDS. CIRCULAR 
TROMINOES

Berlekamp has extended the analysis to cover the case in which the strip 
of squares need not start with any terminal trominoes, so that either player 
can move at the end. He finds that there is a similar type of arithmetico- 
geometric ultimate periodicity, and observes that some new values occur. 
Fig. 58 gives his results (o denoting a free end), and we add a further column 
showing the values when the initial configuration consists of a strip of n

ow oo c irc le ow oo circ le ow oo c irc le

0 0 0 0 13 m * • 26 0 0 0
1 0 0 0 14 * • 0 27 0 0 0
2 0 0 0 15 * • 0 28 0 0 0
3 1 * 0 16 ft};i 0 0 29 ft} ;} • 0
4 * * • 17 0 0 0 30 * • 0
5 * • • 18 0 0 0 31 • • •
6 * • 0 19 0 0 0 32 • • 0
7 t * *2 0 20 T} *2 0 33 T * * •2 0
8 T 0 0 21 T* • • 34 t 0 0
9 0 0 0 22 * • 0 35 0 0 0

10 0 0 0 23 * * 0 36 0 0 0
11 t .2 0 24 ?• •2 0 37 T •2 0
12 t}* • 0 25 Ti 0 0 38 t« * * 0

F ig . 58.
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squares bent round into a circle, which are easily deduced from Berlekamp’s 
results.

Here we see the values t j , . . . ,  which we explained a few pages ago, 
and also a new system of values of the form <lx;y. These new games are 
defined by the formula

(bc;y =  {01 Tx*, ty}.

I have observed them occurring also in other games, for a wide range of 
values of x and y. Notice that the periodicity of the last two columns is 
exact, with period 26.

THE SUBMULTIPLES OF f

It is natural to ask whether there is any game G with G + G = t? If so, 
then of course there will be many such games, for from any one we can obtain 
another by adding some game H  of order 2. But in fact we can prove that any 
game G can be halved.

T h e o re m  89. For all sufficiently large n,ifw e define H  = {n\G  — n), then 
H  + H  = G.

[For long games G, n may need to be some ordinal.]

Proof. Play the game H  + H -  G. Each of the moves in the H  components 
has its counter, and if n is sufficiently large, each move in G will be countered 
by some move in H.

Notice that this applies even when G =  0, and gives us an infinity of 
distinct games of order 2, which can be halved to give us games of orders
4,8 ,16, On the other hand, a fairly long-standing conjecture, recently
proved by Norton, asserts that there is no short game of any odd order. 
(Norton has also found long games of all finite orders.)

We can modify the argument to produce what appear to be the simplest 
submultiples of t. In general, we define a game x =  x. T as follows.

If x is a positive integer (or zero), x is the sum of x copies of t. If x is a 
negative integer, x is the sum of - x  copies of | .  Otherwise, if x =  {x^jx*}, 
we define x by the formula

X =  {x1, + ft* |x* +  il*}.

It turns out that then we also have

x* = {x1, +  ft | x* +  V).

The definition is invalid when we take x =  cu, and indeed it does not seem 
possible to define & in any natural way. But it works quite happily at, for 
instance x =   ̂ or x =  1 +  1/co.
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According to this definition, we have, for example 

|  = {ft. 14*}, !* =  {ft| 4}
! = {(3.T)* | *}, I* = {3.T|0}.

The games |  and |  are pronounced “semi-up” and “sesqui-up”.
The definition has the properties we should hope for, namely that 

= x  + y, = — x, etc. Moreover, these games can actually arise 
in “real-life” games.

BYNUM’S GAME, AND TWISTED BYNUM’S GAME

The following game was suggested by Jim Bynum. Start with a rectangular 
array of cards: later on in the game this will become a number of separated 
arrays. Left moves by removing a vertical strip from just one of these rec
tangles, and Right by removing a horizontal strip. The strip’s length must be 
the full height or breadth of the rectangle respectively, so that it splits the 
rectangle into two, unless it is removed from the edge, when it leaves a 
slightly smaller rectangle.

We shall give an analysis of Bynum’s game at the end of the chapter, 
since it seems to be one of the most interesting games we have studied. It is 
fairly easy to see what the outcome is from any initial position involving

1 2 3 4 5 6 7 8 9 10 n 12 13 14 15

1 * t * t 2 i* t 2 * T * r2 i* T2 * T *
2 1 0 1 0 iz 0 i 0 i 0 iz 0 i 0 i
3 * t * T2 ** T2 * t * T2 ** t 2 * T *

4 iz 0 iz 0 3̂ 0 .iz 0 Â 2 0 is 0 J * 0 a’U
5 T* t 2 ** t 3 * T2 i* T3 i* t 2 * T3 i* T2 i*
6 iz 0 iz 0 iz 0 iz 0 A 2 0 l 2 0 ■U 0 ^2
7 * T * t 2 1*

I t 2 * t * t 2 i* T2 * T *

8 i 0 i 0 is 0 i 0 i 0 ' i s 0 i 0 i
9 * T * T2 i* T2 ♦ t * T2 !* t2 * T *

10 iz 0 iz 0 iz 0 .iz 0 0 iz 0 iz 0 ^2
11 t* T2 ** t 3 * t 2 1* T3 !* t 2 * T3 z* t 2 i*
12 t 2 0 T2 0 t3 0 T2 0 T2 0 t 3 0 T2 0 t 2
13 * t * f 2 i* t 2 * T * T2 i* I2 * T *
14 i 0 i 0 'i z 0 1 0 i 0 'iz 0 i 0 i
15 * t * T2 i* T2 * T * T2 i* t 2 * T •

F ig . 59.
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just one rectangle, but from arbitrary positions the theory is incomplete, 
but will handle any position likely to be met with in practice.

In the twisted form of Bynum’s game, before making any move, the player 
must rotate the rectangle through one right angle. Otherwise the rules are 
as before. When we tabulate the values (Fig. 59) the table exhibits a periodicity 
which can fairly easily be proved to persist, and so we have a complete theory.

Values for the twisted form of Bynum's game.
In each row and column, the twelve entries after the first three recur 

indefinitely. ** means ±  1), and  ̂are the negatives of J.
Notice that the values t 2, t 3, and +ft appear, as well as certain submultiples 

of T. To see who wins any given, position, proceed as follows. If there is any 
term ±1), this is the best move for the first player—if not, a term or J* will 
be the best move, or failing that, or £*. When all these moves have been 
made, the value is in the group considered in Theorem 88, and so the winner 
is known.

It is remarkable that a game with such a simple definition can at one and 
the same time have a complete theory, yet such a complicated one in play. 
The peculiar emphasis placed on numbers 6m +  5 is surprising.

CUTCAKE

We digress for a moment to consider a game which is defined in a similar 
way to Bynum’s game, but which turns out to have a very simple theory.

1 2 3 4 5 6 7 8 9 -
0 « ? |4 5|6

OOr- 9| 1 1
-1
- 2

0 1 2 3 4 5 6 7 8
-3
- 4

i
0 1 2 3__5

- 6
- 2

- 7
-8 - 3

1

0 1

- 9
-10 4
-11
-12 5

- 2
-1 3
-14

- 6
-15
-1 6

- 7
- 3

F ig . 60. Values of rectangles in cutcake.
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The game is played with a number of rectangular pieces of thin cake, 
already scored into squares by horizontal and vertical lines. Left moves by 
breaking some piece into two smaller pieces by breaking it along some 
horizontal line, and Right moves by breaking some piece along a vertical 
line. When the cake has been completely broken up into squares of the 
minimal size, the player who made the last move eats the cake.

Once again, the typical position is a disjunctive sum of positions cor
responding to the individual pieces of cake, and so we need only tabulate 
values at these. Obviously pieces which are long in the horizontal direction 
tend to favour Left, since he has more scope for vertical breaks. But we think 
the complete answer is rather surprising. See Figure 60.
So for instance a 4 x 7 rectangle still has value 0, although at first sight it 
might appear to favour the player whose cuts in it are shorter.

THE ANALYSIS OF BYNUM’S GAME

As always, the proper thing to do is to tabulate small positions and their 
values. When we do this with Bynum’s game, certain patterns emerge:

1 2 3 4 5 6

1 * i  * 1 * i
2 t  * X XI* Y H * X = t|«
3 * —X * —X * —X  y = * T |*
4 t XJ* X * Y

Preliminary analysis of Bynum's game 
These suggest the following result, which we call the Theorem of 17 October: 
The values in Bynum’s game are given by the following scheme

odd 2 n -  1 even 2 n

odd even 2m

Value: |n + i"  + Tn+imH
F ig . 61.

where the game t l + =  T = 0|*> and for larger n, tn + is the game, with 
negative j.n+, defined by the formula

t»* -  {Ta* + t»* |
Since Tn+ is positive for all n, we can add 0 as a Left option, if we like, in this 
definition.
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This theorem is equivalent to the assertion that Bynum’s game is abstractly 
equivalent to the game soon to be defined, which we shall call Bynumbers. 
We do not need to prove the theorem, since in play it is very easy to see the 
correspondence between moves in the two games, or prove that some of the 
moves are stupid ones. We deduce easily that the initial rectangle in Bynum’s 
game is a win for the first player if both coordinates have the same parity, 
and otherwise a win for the player whose coordinate is even.

THE GAME OF BYNUMBERS

Each player has a number of heaps erf counters, and there may also be some 
neutral heaps. Your legal moves are:

(a) to neutralise any one of your opponent’s heaps,
(b) to split any one of your own heaps into two non-empty parts,
(c) to throw away any neutral heap,
(d) to throw away one of your own heaps.

A heap of size n belonging to Left has value Tn+, so that one of the same size 
belonging to Right will have value |n +. Neutral heaps all have the value *, 
their exact size being immaterial The moves allowed correspond to the 
definition

tn+ = {ta+ + tb+,01
which is valid for all n.

A great many results have been proved about this game, mostly by P. T. 
Johnstone and M. R. Christie. We can summarise a number of them in 
Christie’s strategic rules (in which we have supposed that any pairs of neutral 
heaps have been cancelled, using * +  * = 0):

One should usually prefer (a) to (b) to (c) to (d). The only exception is that 
(b) may sometimes be preferred to (a), but only when the heap to be split is
the unique largest heap on the board, and there is no neutral heap (and not
always then). Moreover, any move of type (a) should always be to neutralise 
one’s opponent’s largest heap.

When we say that one should prefer X  to Y, we merely mean that if Y is a 
good move, then so will X  be, and not any stronger assertioa The proof of 
these rules is quite subtle, but they make the play very simple, for in many 
cases they leave only a unique move to be considered. In particular, it is 
easy to see that a player who has two or more more heaps than his opponent, 
or one heap more and the move, has an easy win.
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In the further analysis, it is convenient to write

u *  =  T + t 2+ +  t 3+ +  . . .  +  t"+.
Then the values t, t 2+, t 3+, . . .  are all positive all small games, whose order 
relations can be fairly easily investigated using Christie’s rules. Any position 
in Bynum’s game is a sum of such values and their negatives, together possibly 
with *.

But Christie’s rules show that when * occurs and the first player has any 
good move, then such a move is to neutralise his opponent’s largest heap, or 
remove the neutral heap when the opponent has no heap. So to analyse the 
game completely, we need only consider sums and differences of the values 
f"+ (counting t = t 1+).

A rather surprising consequence of the rules is that if such an expression 
is positive, it will remain positive however we change the coefficients of those 
terms T"+ that appear a negative number of times in all. (For in the correspond
ing game of Bynumbers, coefficients less than or equal to —2 will at the 
appropriate stage in the game cause the largest heap to be non-unique, 
and then the players will alternately neutralise each other’s largest heaps 
until uniqueness is restored.) So when testing whether such an expression 
is positive, we can suppose each negative term appears with coefficient — 1 
when equal terms are collected and cancelled with occurrences of their 
negatives.

From this it follows that there are only a finite number of basic inequalities 
involving numbers up to any given size n, which Christie and I have calculated 
up to n =  8. We have

|2* p T3+ T1+ + T1 + p T2+
t2 + p T4  + T3+ +

| 4  + p T6+ + r
T3+ p tS + T2+ + T3+ p T*+ + T*
T2+ p t6 + t2+ + T4+ p T6+ + I 8

T3+ > t7 + t 2+ + T6+ p t 7+ + T8

T4+ p T7+ T3+ +
T4+ p T7+ + t 8

T2+ p T8+ t 4+ + T5+ p T8+

(Here A P B means that A exceeds any multiple of B \ and these inequalities, 
together with the fact that T*+ is always positive, suffice to imply all in
equalities between sums of t 1+, . . . ,  t 8+.

Using the Theorem of 17 October, this analyses every position of Bynum’s 
game in which no side of any rectangle exceeds 16 (and many other positions).
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The abbreviated list T2+ p  T3+ P  Ts+, T2+ P T4+ suffices when no rec
tangle has a side greater than 10.

Our remark that a player can win if he has a lead of two heaps, or one 
heap and the move, means that in actual play one need only expand the 
situation into a sum of terms |" + when it is quite closely balanced. Then we 
use the assertion that a sum of terms T"+ and -T*+ will be positive if and 
only if it can be expressed as a sum of terms chosen from

t 1+, t 2+........ t 2+ -  N . t 3+, f 2+ -  N . t4+, . . . , t 4+ +  T5+ -  1V.T8 +

(corresponding to our list of basic inequalities), where the numbers N, 
which need not be the same, can be arbitrarily large.

So for instance in the sum
J 2 +  _  J 3 +  +  J 4 +  +  | 5 +  _  f 6 +  _  J7  + _  J8  +

we needa term t 2+ -  N A 3+ to cope with the term —T3+. Subtracting this, 
we have (for a different N)

;v .f3+ +  t 4+ +  T5+ -  T6+ -  ?7+ -  T8+.

But now we need a term t 3+ +  t 4+ — iV.T6+ — N . t 7+ to account for the 
— T6+, since we have no longer a term f 2+, and this leaves

N . P + +  T5+ + N . t 6+ +  JV.t7+ -  T8+,

which is not positive, since no one of the basic inequalities can be used to 
eliminate the term —18+.

Of course such a sum can only be positive if the term T"+ with the least n 
appears positively, and so the above sum is not negative either. It follows 
that in a position with this sum as value, the first player has the winning 
move. Such a position in Bynumbers is that where Left has heaps of sizes 
2, 2, 5, 5, and Right heaps of sizes 1, 3, 3, 8. The reader might like to find 
winning moves for each of Left and Right as first player.



CHAPTER 16

T h e  L o n g  an d  th e S h o rt  an d  th e S m a ll
. . . and there were present the Picninnies, and the JobiUUies, and the 
Garyuties, and the grand Panjandrum himself, with the little round 
button at top, and they all fe ll to playing the game o f  catch as catch 
can, till the gun powder ran out at the heels of their boots.

-Samuel Foote (printed in Maria Edgeworth’s 
“Harry and Lucy Concluded”)

This chapter discusses the ways in which long games (those with an infinity 
of positions) may differ from short ones. We start with a theorem which we 
have postponed from Chapter 9 so that it could serve as the text for a sermon.

T h e o r e m  9 0 .  For every short game G which is not a number, we have the 
translation property

G + x  =  {GL +  x | GR + x}.

Proof. In the difference

{GL +  x | G* +  x) -  x + { — G* j — G1}

we see that the moves in the components other than —x have exact counters, 
and so we need only show that there is no good move in — x. But the move for 
Right to — x f  takes us to the difference

{GL + x \ G R + x} -  (G + x 1) = H  -  K,  say.

But then H  and K  have Left and Right values obtained respectively by 
adding x and x f  to the Left and Right values of G, and so we cannot have 
H ^ K .

Now this theorem ceases to hold for all long games. Let El denote the set 
of ail real numbers, and consider the games

d  =  R | R, B =  R 10, C =  R II R 10

We shall find that A, B, C have quite interesting properties. Of course it 
would make no difference if we were to replace R by Z (say) in their definitions.

205
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The game A = ±IR plainly cannot have the translation property, since 
the set R +  x is identically the same set as IR for all real x, and so we should 
obtain the absurd equality A +  x = A for all real x. The trouble is that the 
Left and Right values of A do not exist, for the Left and Right sections are 
not near numbers.

We can still compute these sections using Theorem 56, with max and min 
replaced by sup and inf. We find L(A) = sup R(x), over all real x, so that 
L(A) is the section, which it is natural to call oo, between all real numbers and 
all larger numbers. In a similar way, we find R(/4) = — oo, L(B) = oo, 
R(B) =  U 0), UC) = R(C) = oo.

So A is confused with all real numbers (and therefore with numbers 
between them), but lies strictly between any infinite negative number and 
any infinite positive one (say —Q)l/a and co17"). In a similar way, B is confused 
with real numbers greater than or equal to 0, but greater than all negative 
numbers and less than infinite positive ones. The game C is a little more 
interesting, since it is confused with no numbers, having all real numbers 
to its left and all infinite positive numbers to its right.

For G to have the translation property, it suffices that one of the two sec
tions L(G), R(G) should be “next door to” some number y, that is to say, should 
have the form L(y) or R(y). So for instance, B has the translation property.

The temperature theory of Chapter 9 works wholesale for the Class of all 
games that have only finitely many stopping positions. We need only re
place the words “dyadic rational” by “number” whenever they occur. For 
these games we can still draw thermographs, although the coordinate axes 
must have space for arbitrary numbers. In particular the mean value G^ 
always exists for such games, although for games with infinite temperature 
it can be a pretty useless concept.

Thus the game {1 +  co 11 -  ©} has mean value 1, but since it is infinitely 
hot (t =  co) it is not true that m.G is necessarily very nearly m. 1, and indeed 
for all odd m, m.G = {m + u)\m — a>} is confused with all real numbers. 
With a slightly more complicated G we could make this hold for even m as well.

There are many more games for which the temperature theory works, 
but it is plainly not true that (for instance) every game has a mean value, 
in any reasonable sense. For since the game C lies between all real numbers 
and all positive infmite numbers, we should expect the same to be true of 
its mean value, which therefore could not be any number.

The game C is constructed in the same sort of way as the game considered 
in Chapter 10. In general, for any set S of numbers consider the game 
G =  S || S | - x ,  where - x  is less than every member of S. Then it is easy to 
see that the Left and Right sections of G are both the section R(S) “just to the 
right” of S—that is to say, lying to the right of every number in S, but left of 
all greater numbers. Moreover, using Theorem 55 it is very easy to see that
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if H  is any game greater than every number in S, then G < H  for all sufficiently 
large ordinals x. In particular, the positive game +„ = 0 1| 0 1 — a can be made 
less than any given positive game by choice of a, and so these games really 
do “tend to 0” as a “tends to On”. In a similar way, the game R || R j -  a 
tends downward towards the real numbers as ot tends to On.

We can use the same idea to investigate the largest infinitesimal games. 
Letting R+ denote the set of all strictly positive real numbers, we see that the 
game 1 1 R+ j| R+ is an infinitesimal game strictly greater than all infinitesimal 
numbers, and that if we were to replace 1 here by a large ordinal a we could 
obtain an “arbitrarily large” game with these properties.

GAMES OF ODD ORDER

It is easy to see that there can be no short game G satisfying the equation 
G +  G +  G = 1, for this equation implies that the mean value of G is 
whereas the mean value of any short game is a dyadic rational. On the other 
hand, there is a long G with this property, namely the number G =  We shall 
see that there are others in a moment.

Now Theorem 89 of Chapter 15 shows us that there exist short games whose 
order is any desired power of 2, and Norton has generalised the construction 
we gave immediately after that theorem for producing submultiples of t, 
and deduced in particular that there are long games of all finite orders. We 
repeat his argument.

Let G be positive, and let H satisfy H — K >  all G -  GR, GL — G, and 
2 K  = G, where K = {H\G — H} > 0. Then for numbers x define “multiples” 
x. G (depending also on H) as follows. For x a finite integer, define 
x. G to be the sum of the appropriate number of copies of G or — G. For other 
numbersx =  {x^x*}, define x.G =  {xL.G +  H |x* .G  -  H}. (When we want 
to emphasize the dependence on H, we can write x(Jf)G. Thus for example 
we have \  Then it is easy to see that (x +  y).G =  x.G  + y.G,
and hence in particular that \ .G  = X  satisfies the equation X  +  X  +  X  =  G. 
For G =  1, H =  we find that ^(H)1 satisfies X  +  X  + X  = 1, but X  #  
(since its Left and Right values are different), and so X  — £ has order 3. 
Obviously we can construct games of any finite order like this.

But Norton has also proved what was quite a long-standing conjecture, 
that no short game has odd order. We follow his proof now. We call GL — G 
the incentive of the move from G to GL, and G — GR the incentive of that 
from G to GR, since these quantities measure the value of these moves to the 
player making them. Now we shall call G balanced if in whatever form G is 
taken, for each irreversible move from G there is a move for the other player 
of at least as great an incentive. (In fact it can be shown that G is balanced
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provided only that this condition holds for the simplest form, but we do not 
need this.)

T h e o r e m  91. IfG  has finite order, then G is balanced.

Proof. Suppose n.G  =  0, and consider a typical option of G, say GL. 
Since GL + {n -  1).G <110, we have either

some G1** +  (n — 1).G <  0

or

some Gl +  GR + (n — 2).G  <  0.

In the first case the move to GL is reversible, and in the second case the move 
to G* has at least as great an incentive. The argument applies to every form 
of G.

It follows of course that if G is of finite order, then every multiple of G is 
balanced. The next theorem shows that any short game with the latter 
property has order some power of 2, and so, together with the previous 
theorem, establishes Norton’s result.

T h e o r e m  92. I f  G is born on day g, and 2*.G is balanced, then 2*.G =  0.

Proof. We suppose that all positions of G are in simplest form, and consider 
expressions of 2*. G in the form

2*.G = a.2k.H  + b.2J.J  +  c.2k.K  +  . . . ,

where H ,J ,K , . . .  are distinct positions of G or — G bom on the respective 
days h ,j ,k , . . . ,  and a ,b ,c ,...  are positive integers. We shall show that if 
any one of H, J, K , . . .  is non-zero, the expression can be replaced by a simpler 
one of the same type, so that by repetition we may reduce the particular 
expression 2*.G to 0.

We compare the simplicity of two such expressions E and F as follows. 
Enumerate the positions of G and - G  in any way which ensures that each 
position precedes all positions bom on later days, and that any position H  
is adjacent to its negative — H, unless these coincide. Then call E simpler 
than F if the latest game of this list that occurs in just one of £  and F is in F.

Now consider such an expression, with H ,J ,K , . . .  not all zero. Then one 
of these games has a move (say the move from H  to HL) whose incentive is
not strictly exceeded by the incentive of any other move from any of H, J, K .....
If several moves have equal incentive, we suppose further that H  is the possi
bility that appears latest in our list Then the move from the given form of G 
to

HL +  (fl.2* — l) .H  + b.2J.J  + . . .
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is either reversible or there is some move for Right of at least as great an 
incentive. Considering the various possibilities, we obtain an inequality of 
one of the forms:

H1 + 7* +  (a.2* -  \) .H  +  (b.2J -  1 ).J  + . . .  <  2».G

&  + HR +  (a.2* -  2).H  + b.2J.J  +  . . .  <  2*.G

H “  +  (a .2* -  1 ) .//+  b.2J. / +  . . .  4  2».G

and so one of HL -  H  J -  JR, HL -  H  ^  H  -  H*, HLR <  //.
Since the move from H to H 1 had maximal incentive, we must have equality 

in the first two cases, and since H  is in simplest form, the third case cannot 
happen. But now we can simplify the given expression by replacing the term 
a.2h.H b y

a.2h.JR + a.2h.(—J) +  a.2k.H L or +  a.2k~l .H R

in the two cases. The new expression is strictly simpler than the original, and 
still enjoys the property that the coefficient of any game born on day n is 
divisible by 2". (The strictness of the simplification follows from the fact that 
the games JR, —J, HL, H* all appear strictly before H  in our list.) As we 
remarked, we can now repeat the process to show that if 2*.G is balanced, 
and in particular if G has finite order, then 2*. G =  0, showing that the order 
is a power of 2. We already know short games whose orders are arbitrarily 
chosen powers of 2, and some games of order 4 (of the form x | * — x for 
numbers x) actually arise as positions in our games of dominoes and 
SNORT. It is probable that in these two games we can also find positions of 
orders 8, 1 6 ,..., etc.

Norton and I have slightly extended the argument of Theorem 92 so as 
to show that for any short game G and odd number n, G is expressible as an 
integral linear combination of the positions of n.G, in no matter what form 
n.G  is taken. So for instance there is no short game G with 3 .G = T, since 
no game of the form a. T +  b.* satisfies this equation.

The Class No of surreal numbers is defined as a Subclass of the Class Pg of 
games by the hereditary requirement that every game G in it satisfy GL< G < 
GR, for all GL and G". Norton has also established a conjecture of mine that 
any game G for which GL<G<GR holds for all GL, GR is already a number. In 
other words, any game other than a number is confused with some one of its 
options.

Perhaps the most significant way in which long games may differ from- 
short is the lack of any theory of canonical forms for general long games. 
We showed in Chapter 10 that every short game had a unique simplest 
form, distinguished by having neither dominated nor reversible moves. 
Now for long games we certainly cannot hope to omit dominated moves,
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for example in the game cu =  {0 ,1 ,2 ,3 ,... | } every move is dominated, and 
we certainly cannot omit them all! But of course we can omit certain infinite 
sets of moves without affecting the value—for instance we have

cu = {1,2,4,8,16,32,... |}.

So we do not expect a simplest (i.e. smallest) form.
On the other hand, we can ensure that a quite arbitrary game has no 

reversible moves. We recall from Chapter 10 that the move from G to GL 
is called reversible if we have some G*** <  G, and that we may then replace 
Gl by the set of all G*JU' (for this G1"*) without affecting the value of G. Now we 
may do this simultaneously for all reversible GL (and G*) and repeat until 
no move is reversible, and we are not led into an infinite regress, for this 
would entail an infinite sequence

GL, GL*L, GULiU-, GutLKLML,

and so an infinite play of G. The argument by which we proved Theorem 69 
now proves that if G and H  are free of reversible options, then we have 
G =  H iff each GL <  some HL, each HL ^  some GL, each G* some HR, 
and each HR ^  some G*, or in other words, two games without reversible 
options are equal if and only if each option of either is dominated by a 
corresponding cption of the other.

It does not seem to be possible to do better. In particular, Norton has 
disproved a fairly long-standing conjecture (the ancestors conjecture) by 
producing two forms for a certain long game G with the property that G 
cannot be expressed in terms only of the positions common to both forms. 
This cannot happen for a short game G, since the theory of Chapter 10 shows 
that then every position in the simplest form of G arises as the value of a 
position in every form of G. Norton’s game is

G = {01|0 J0 ,0 J —2,...}  and {01|0 J —1,0 | - 3 , . . . ) .

The following result was promised in Chapter 15. Although it refers 
to all games its main applications seem to be in comparing the sizes of 
very large or very small games, so we give it here. In particular, it has an 
important application to the calculus of atomic weights which we shall 
describe shortly. We say that “G involves X ” to mean that some position of 
G has value X. Recall that X : Y  denotes the ordinal sum, defined inductively 
by:

* :  Y =  {XL, X: YL | X*, X : T*}.

T h e o r e m  93 (Norton’s lemma). X  and X : Y have the same order-relations 
with all games G not involving X.
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Proof. Since for any Y there is some ordinal a with — a <  Y <  a (Theorem 
55), we are reduced to proving that X  and X:a  (or X: —a) have the same 
order-relations with all games G not involving X. Taking obvious inequalities 
into account, this amounts to proving that

X:a  >  G implies X  >  G and X  <  G implies X:a  <  G 

for every positive ordinal x  From the definition, we have

X:<x = {X L,X :p \X * } ,

where ft ranges over the ordinals less than x
Suppose first that X: a. >  G, but X  <31 G. Then there must be a good move 

for Right from X  — G. But his move td X R — G is also available from 
X :a  — G, and so this must be to X  — GL, say. Since X  is not involved in G, 
it cannot be involved in GL, and so from X  ^  GL we can deduce inductively 
that X:a  <  GL, contradictingX:a  >  G.

So we must suppose that X  <  G, but X:a  |t>G. What is Left’s good move 
from X : a — G? Certainly not to X L — G, for this is available also from 
X  — G: and not to X :a  -  GR, for this implies X:a  >  G*. so inductively 
X  ^  GR, contradicting X  <  G. So we must suppose that Left’s good move is 
to X :p  — G for some ordinal /? <  x  But now we have X:fi >  G, and so 
inductively X  >G, which combines with the assumption X  <  G to show 
that X  = G is involved in G.

Before we proceed to the applications to small games we deduce the 
corollary promised in Chapter 15.

T h e o r e m  94. I f  neither X  nor Y has a reversible move, then neither does 
X .Y .

Proof. Suppose to the contrary that X : Y has a reversible move, say for 
Left. What is this move?

If it is a move to X 1, reversed to X 1* , we have <  X: Y, so by Norton’s 
lemma X 1*  <  X, since XLJt does not involve X , showing that after all X  
had a reversible move to X L.

If it is to X : YL, reversed to X R, we have X R <  X : Y, which is impossible 
since X R is a Right option of X:Y.

Finally, if it is to A": YL, reversed to X : 7 1*, we have X : Y1*  <  X: Y. But 
from Chapter 15 we know that X: Y is a sop function (strictly order pre
serving) in y, so we must have Y1*  <  Y, showing that after all Y had a 
reversible move to YL.

Now we know that in general the value of X : Y depends on the form of X, 
rather than only on its value. But we can use our earlier remarks to select an 
‘absolute’ version, defined as X: Y for forms X  and Y without reversible 
options. It is easy to see that if X t and X 2 are forms of the same game neither
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of which has a reversible option, then X l: Y = X 2: Y, for each option of any 
of these is dominated by a corresponding option of the other. Theorem 94 
now further shows that X:(Y:Z)  =  ( X :Y ) :Z  under this convention, for 
no new reversibility is introduced on either side. Of course, since X : Y is 
a sop function of Y, its value depends only on the value, and not the form, of 
the second variable Y.

THE GAMUT OF GAMES

We are now sufficiently well-informed to present a fairly complete picture 
of the possible types of magnitude for positive games.

To fix our ideas, we first discuss the possible sizes of numbers.

very small: numbers like —, - L , . . . ,  -  for large ordinals a;
ai co a

^ • , „ , ,., 2 3  1 1 1 „fairly small: numbers like —, —, -7—, -j—, a) *;
co co yjco $c0 co

ordinary sized: numbers like 7̂ 3, 1, 2, 100;
fairly large: numbers like $co, yjco, a>tlw, co® a n d
very large: numbers like co, co2 co®, a for large ordinals a.

If a is a large ordinal we can say that the smallest infinitesimal numbers 
are like 1/a, and the largest like l/fct)1'"), while the smallest infinite numbers 
are like co1* and the largest like a.

When we add general games the above scale needs enlarging at several 
points. So we now consider:

GAMES IN THE GAPS

In Chapter 3 we discussed the gaps in the number line. Only some of these 
gaps can contain games, since it follows from the discussion in Chapter 9 
that the gaps L(G) and R(G) must each be upper or lower bounds of non
empty sets of numbers. Every gap with this property has the form x  +  to8 
or x  — to8, where x  is a number and E another gap that is the upper or lower 
bound of a set But now the gap E may be On or — On, which do not contain 
games, since they are the lower and upper bound (rf the empty set.

These remarks show that it suffices to discuss the games that lie in gaps of 
the form co8, which have the property that the sum of any two games from 
the gap is again in the gap. The particular case E = — On, when co2 is the gap 
1 /O n  containing small games, is rather special and will be discussed later. 
Otherwise E is either the upper or lower bound of a non-empty set, which 
gives two cases in the argument.



The gap oo typifies the first case. The smallest games in this gap have already 
been described—they are the games co. =  R  || R | - a  for large ordinals a. 
The largest games present rather more of a problem. It turns out that they 
are the games oo® defined inductively by

oo1 =  oo = R || R | R

oo® = {cof .n || oo*.n | — oo*.n} if a 5= 2

where jS ranges over all the ordinals less than a, and n over all the positive 
integers.

There are some interesting identities between these games. If x is a finite 
number, then oo.+JC =  oo. — x. But the most interesting results concern the 
game oo itself. We have oo +  oo = oo0 (the game C of our introduction to 
this chapter), and also the equalities

R |R = ± o o ,  R 10 = oo 10 = (2. oo)|0 =  oo ±  oo,

oo | ±  oo = oo +  n , oo || oo |0 = 2.oo.

Some similar equalities exist involving higher powers of oo®.
Now let fl be another gap of the form a)8 .where S is the upper bound of a 

non-empty set. Then we can define games

fi. =  {tux.n || £0*.n | - a } „ s

O 1 =  {eo*.rt  || a > * .n  | - a ) ® . n } „ s  , - 1 . 1 . 3 . . . .

^  =  || f l ^ . n  | — = 1 , 2 , 3 , . .  >

and it turns out that the fl. are the smallest games in Q, and fi® the largest. 
The gap l/oo typifies the other major case. We can define

(l/oo). = {a | R+ || R+}

where R+ denotes the set of positive reals, and these games are the largest in 
l/oo. To find the smallest we need a more complicated construction, defining 
games

oo-1(x) =  {x| R+ || R+ HI R+>

0 0 " “ (X )  =  {■* | 0 0  ~ ^ {y )  | |  0 0  ~ ^ { y )  J!) 0 0  ” fi<a

where a is any positive ordinal and x any number. Then it turns out that the 
games oo"®(x), or even just 00“® = oo~®(l), are the smallest games in l/oo.

In the general case in which fl =  co8, and S is the lower bound of a non
empty set S, we can define

GAMES IN THE GAPS 2 1 3
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= { x l w l l  W i l l

(Since fl is the lower bound of a set, the impropriety in letting y  range over 
all numbers greater than Q is only apparent). I do not know why ty/y) 
must appear three times in this definition.

The case +  = 1/On is special. However, it is easily solved. We have already 
shown that +* = 0 | |0 |  — a are the smallest games in this gap. The largest 
are the games oo*.T, the multiples of T by the largest games in the gap ao. 
This remark shows perhaps most conclusively that there is no natural 
definition of x.T if x is an infinite number, for there is no game greater than 
all the games oo“. t  and less than all positive numbers.

THE GAMUT REVEALED

We use x for a positive number, possibly further restricted, and a for 
an arbitrary ordinal. Then we have:

The very smallest games +  ,, + 2, . . .  +  +«.
The smallest all smalls +  t (x finite).+(0O. t)
The t  scale t ,  t 2, t 3, v . , T * .
Largest below 0 *01, *012, *0123,... * 0 1 2 (/f <  a) (defined soon).
Multiples o f T T.ft x.T (finite x).
Largest small games oo.t, oo2. t , . . . ,  oo*. t.
The smallest infinitesimal numbers 1 /co,. . . ,  1 /a .
The largest infinitesimal numbers 2 /co, 1 /y/co, . . . ,  1 /col/*.
The next smallest games oo-1, oo-2, . . . ,  oo““ =  oo~*(l).
The largest infinitesimal games a | R+ || R+ =  (l/ao)€.
The finite numbers jJq, j,  1, 2, 100, —
The smallest infinite games oo. =  R || R | — a.
T he largest games in oo oc* = ao*. n || ao*.n | -  ao *. n.
The smallest infinite numbers co/2, yjco, co1/o, . . . ,  co1'*.
The largest infinite numbers to, ( 0 .2 , . . . ,co®,. . . , co*.

We note that it is the Archimedean principle that tells us that the numbers a 
really do “tend to On” in the sense that every game is less than all sufficiently
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large ordinals. It is a fairly easy deduction that + a really does “tend to 0” 
in the sense that any positive game is greater than some +„.

It is also easy to see that if x and y are numbers with x <  y, then for the 
corresponding tiny games we have +y infinitesimal with respect to +#  
so that in these games we have a scale of infinitesimals. And we can also let 
x vary over the infinite numbers less than co, or over some class of games 
between the finite and infinite numbers, so that even the tiny world has a very 
rich structure. The smallest all small games have the form + (Jt . t) where 
x is a finite number if we want a short game, but may be oo* if we allow long 
ones. While we are still on the subject of tiny games, we might remark that 
it is amusing to verily that for any game G, we have + + + = T, so that in 
particular, T is the unique solution of G = + G.

We can use Norton’s lemma to show that the game + x is smaller than any 
positive all small game G, as follows. We find that (x 10}: 1 can be expressed 
as {x|0} +  x, so that {x|0} and {x|0} +  x have the same order-relations 
with {x|0} +  G, since this does not involve {x|0}.

THE SUPERSTARS, AND THE GAME OF SUPERNIM
The games * a b c which we call the superstars, are defined by the 

equation
*abc. . .  =  T* +  {*a, *b, *c,. . .  | *0, *1, *2,..

where the sequence 0 ,1 ,2 ,.. .  on the right is long enough to include the mex 
of all the numbers a, b, c, . . .  on the left. If S is the set of numbers a ,b ,c , . . .
we sometimes write *S for *abc These games arise naturally in several
places, and have the following properties

(i) If S has a single element s, say, then *S = *s as usually defined.
(ii) If S is a proper subset of T, then *S < *T.
(iii) We have *n <  *S iff n e S  (and otherwise *n || *S).
(iv) We have *S < t* +  *n iff n £ S (and otherwise *5111* + *n).

There is also a restricted translation-invariance property—if the set T has 
the form S + 2 n for some n, then +T — *S + *n for the least such n. (Here 
S + 2 n denotes (s + 2 n | seS}.)

A supemim position is a game of the form

G = {*a, *b, *c,. . .  | *a, */5, *y,. . .}

which has both Left and Right options which are all Nim-heaps. For such 
games we have the identities

G = *m if both sets S =  {a, b, c ,. . .} and £  =  {a, ft, y ,. . .} have the same 
mex m.
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G =  J,* +  *S if S has the smaller mex.
G =  T* +  *!■ if E has the smaller mex.

So every supernim position is either equivalent to a Nim-heap or to one of 
form {*a, *b, *c,. . .  j *0, *1, *2,...} or {*0, *1, *2 ,... | *a, *b, *c, ...}  in which 
we may suppose that one side or the other contains all numbers we like. 
We call the former type Right’s terms and the latter Left’s ones.

We assert that in a sum of such terms (including Nim-heaps) Left will win 
if he has at least two more terms than Right, or at least one more and the 
advantage of having first move. He wins in fact by destroying Right’s terms 
as quickly as possible (replacing them by arbitrary Nim-heaps). When it is 
his move and he has destroyed them all, there will still be at least one Left 
term left. If there is exactly one such, Left can replace it by a Nim-heap of 
just such a size as to make the resulting Nim-position have value zero. If 
there are just two such terms, Left can replace one by a Nim-heap so large 
that Right (who is restricted in his choice for the other) cannot replace the 
other by one which makes the Nim-game have zero sum. Finally, if there are 
three or more Left terms remaining, Left can afford to replace any one of 
them by an arbitrarily chosen Nim-heap and leave further decisions to his 
next move.

This argument proves that any sum or difference of terms *S is infinitesimal 
with respect to ft. We shall use this property later. The remaining cases,
in which the mover has one less term than his opponent, present a more
difficult problem. But if each player follows the policy of destroying his 
opponent’s terms, his opponent can do no better than to do likewise, and 
the game reduces to the game of supernim.

In this game, each player has a number of cards, each card being labelled 
with a number of Nim-heaps it may be exchanged for. It does no harm to 
suppose that initially the two players have the same number of cards. The 
players then alternately declare their cards, replacing them by one of the 
permitted Nim-heaps. When all cards have been declared, they play the 
resulting Nim-game to decide the winner. (Notice that in this translation 
Left’s terms have become Right’s cards).

The sum *S +  *T + . . .  — *U — *V . . .  has then the same outcome as the 
supernim game in which Left has cards corresponding to the sets S, T ,. . .  and
Right cards corresponding to U, V , In particular we see that the outcome
of such a sum is unchanged when we replace the numbers appearing in the 
sets S, T,. . . ,  U, V,. . .  by any other numbers with the same Nim-sum relations. 
There does not appear to be a complete theory, and we shall consider in 
detail only the case when the numbers appearing are chosen from 0, a, b, c, 
where c — a + 2b.

In this case the restricted invariance principle allows us to suppose every



term is one of *0a, *0b, *0c, *abc, or *0abc (or their negatives) together with 
Nim-heaps *0, *a, *b, *c which we can combine if we like. (For most of the 
game they have a rather negligible effect.)

Then a term *0abc is greater than any sum of other terms.

(For a player with a card bearing all labels 0, a, b, c obviously wins by 
declaring it to have the appropriate value right at the end of the game: we 
suppose of course by cancellation that his opponent has no such card.)

I f  there is no term #0abc, the terms *abc +  *0a (say) beat any combination
o f other terms.

(For a player holding the two corresponding cards can at his next to last 
declaration choose 0 or a so as to ensure that his last declaration wins the 
Nim-game.)

A term *0a is not beaten by any sum c f terms *0b, *0c and Nim-heaps.

(For the player holding it can at his last declaration choose 0 or a so that 
his opponent (who must declare 0 or b say) cannot correct the resulting Nim- 
game to have zero value.)

Finally, the term *0a [or any multiple thereof) beats only the Nim-heaps
*0 and *a.

Since we can always add terms *0 so as to balance the number of terms on 
each side, the above theory handles all supernim games in which all labels 
are chosen from 0, a, b, c, and all sums or differences of such superstars.

The superstars play an important role in the atomic weight calculus, to 
which we now proceed, since they include the largest games of atomic weight 
zero.

THE THEORY OF THE SMALL WORLD. ATOMIC WEIGHTS

Perhaps this is the most useful and intriguing topic of this chapter; the 
theory of magnitude in the small world, developed jointly by Norton and 
the author. We use the term small world for the large family of games whose 
sizes are most naturally measured in units of | .  The small world behaves in 
many respects like the large one, but often with a fundamental “uncertainty” 
of size about t  or ft which makes exact calculation rather difficult The main 
achievement is the calculus of atomic weights, measuring small games in 
terms of t, which enables us to use the mean-value calculus in the small world.

Because the complete theory is rather difficult and does not yet seem to be 
in final form, we omit several proofs. Norton hopes to present a complete 
account of this theory and his extensions of it in due course.

THE THEORY OF THE SMALL WORD, ATOMIC WEIGHTS 217
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COMPARING G WITH THE STARS. REMOTE STARS AND 
ATOMIC WEIGHTS

We need to be able to decide for which n we have *n ^  G or *n ^  G. 
Accordingly we define the Above and Below classes of G by:

A(G) = class of n with *n ^  G
B(G) = class of n with *n <  G.

T heorem 95. Suppose the Above and Below classes known for all options 
of G. Define A as the class o f n not in any B(GL\  and B as the class o f n not 
in any A(GR). Then if A has the smaller minimum (or B is empty), we have 
/4(G) =  A and B(G) empty, while if B has the smaller minimum or A is empty we
have /4(G) empty and B(G) = B. Finally, if  A and B have the same minimum m,
then we have G = *m, and so /4(G) = B(G) = {m}.

(The proof is a fairly easy calculation.)

It follows from this algorithm that the comparison of G with *n is ultimately 
independent of n. Either for all sufficiently large n we have G > *n or for all 
sufficiently large n G < *n, or G is incomparable with all sufficiently large 
*n. For short games G the comparison becomes constant for n larger than 
the number of moves in G, but for long games we might need an infinite 
ordinal number for n. But in any case we can speak of comparing G with 
the remote stars. It turns out that the result of this comparison plays an 
important role in determining the atomic weight of G—this fact we might call 
Mach's principle for the small world. For the sake of precision we shall call 
*n a remote star if *n is not involved in G, and suppose G a short all small 
game.

Then the exact form of Mach’s principle is that the atomic weight of G is at 
least 1 if and only if G exceeds the remote stars. Since we have not yet defined 
atomic weights, we interpret this for the moment in the form:

T h eo rem  96. I f  G exceeds the remote stars, then for any finite N  the sum of 
N  + 2 copies o f G exceeds the sum of N  copies o f |.

Proof. Let *n be a remote star. Then if G > *n we have G > (*n): 1 by 
Norton’s lemma. But

(*n): 1 =  {*0, * 1 ,..., *n \ *0, * 1 ,..., *(n -  1)} =  f* -  *01... (n -  1). 

The desired assertion now follows from the analysis of supemim.

THE SUPERCOOLING FUNCTION G‘

Let r be a real number satisfying 1 <  t <  2  Then there is a supercooling
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function (? defined for all short all small games G. This is defined in exactly 
the same way as the ordinary cooling function G, of Chapter 9, but with a 
different and more subtle proviso. In fact G' is defined by the inductive 
definition

G' =  {Gu  -  11 G*‘ +  t}

except possibly when there is more than one permitted integer N, that is 
to say, more than one N  which satisfies

Gu  -  t <ll N  <n GRt + t

for all GL, GR.
In this excepted case, G' is defined as:

the largest nermitted integer (necessarily positive) if G exceeds the remote
stars
the least permitted integer (necessarily negative) if G is exceeded by the
remote stars
the integer zero (necessarily a permitted integer) if G is incomparable with
the remote stars.

To summarise, we may say that G' is defined by the inductive formula 
G' = (Gu  — t 1 GRl +  r} except that when we are faced with a choice between 
several integers we choose not the simplest, but rather the greatest, least, or 
the number zero according to the remote star criterion. The amazing result, 
which we do not prove here is:

T heorem  97. The supercooling function is a homomorphism (from short all 
small games to games). In other words, we have (G +  H f  =  G' +  //*, and 
( -G )' =  —G'.

There are some difficulties in defining a supercooling function for other 
values of t. For t >  2 there is no difficulty, however. We can in fact define 
G' consistently for all t > 1 by use of the equation G*+* =  (G')„, which will 
hold whenever both sides are defined. For 0 <  t <  1 there are several alter
native definitions which achieve the same result, but no one is particularly 
satisfactory, and there are even worse problems for t =  0.

The most important case is t = 2, and so we write G" for G2, and call G" 
the atomic weight of G. In fact the atomic weight determines G* for all r >  1 
(for t >  2 by cooling, and for t < 2 by ‘heating up’), so that we do not need 
G* for any t other than 2. The following omnibus theorem collects atomic 
weight information:

Theorem 98. (i) We have G" = {GL‘ -  2|GR" +  2} except that when this
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permits more than one integer, G" is the largest or least permitted integer or is 
zero according as G > *n, G < *n, G || *n for remote *n.

(ii) Atomic weights are additive—so (G +  H)" = G" +  H", (— G)" = — G",
(iii) G" ^  1 iff G exceeds remote stars.
(iv) G" <  — 1 iff G is exceeded by remote stars.
(v) I f  G" 5= 2,G  is positive, and if G" <  —2,G  is negative.
(vi) I f  G" i> 0, then G i> 0, and if G" <n 0, then G <n 0.
(vii) For G = x =  x  .f, we have G" =  x. In particular, the atomic weight 

of f is 1. Also the atomic weight of fx is 1 for x > 0.
(viii) The atomic weights o /f  * (x >  IX *n, *abc. . . ,  are all zero.
Let us compute the atomic weight of the game {01f, f*} which we called 

111; 1 in Chapter 15. Here GL has weight 0, and each G* has weight 1, and so 
the inductive formula gives {0 — 2 11 +  2}, which permits the three integers 
0,1, or 2  So the atomic weight of G will be 0 or 2 according as G is incompar
able with or exceeds the remote stars. So we must use our method for com
paring G with the stars.

Here we have B(GL) = {0}, and so A is the complementary class {1,2,3,...}. 
Again, A(GR) is empty for each GR, since we have no *n >  f or f*, and so the 
class B contains all integers, B =  {0,1,2,...}. Since B has the smaller 
minimum (OX it “wins”, and we have A(G) empty, B(G) “full”, so that in fact 
G exceeds all stars, and in particular, the remote ones. So the atomic weight of 
G is the largest permitted integer 2.

Now let us consider the game {(11 j*}. Here the inductive formula reads 
{2 -  2 1 - 1  +  2} = (0 11}, and since there is no integer between 0 and 1 
this already gives the correct answer So atomic weights need not be integers. 
The example {(l|l)} = ±  (1 shows that they need not even be numbers, for 
here the inductive formula gives {2 -  2 1 — 2 +  2} = {0 j 0} =  * for the 
atomic weight. In fact we saw in Chapter 15 that in a natural sense the product 
o ff and * is ±  (1 +  *, and so on taking atomic weights we have

* =  (±11)" +  (*)",
whence indeed (±  II)" =  *.

Nevertheless the atomic weights of simple games tend to be numbers, 
and even integers, since after all the atomic weight is a kind of cooling func
tion. This nice property is of course counterbalanced by a nasty one— 
we cannot assert that a game of positive atomic weight is positive, but only 
that it is positive or fuzzy. To achieve positivity of G we must know that 
G’s atomic weight is at least 2, although if its weight is 1 or more we can 
assert that G exceeds almost all stars.

ATOMIC MASS THERMOGRAPHY
The atomic thermograph is a device for determining atomic weights,
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or to be more precise, atomic mean weights G” (the mean value of G", or 
equivalently the value of G  for large t). Since for the inductive calculation 
we need to compare G with the stars, we shall draw the atomic thermo
graph like the ordinary thermograph, but write the members of A(G) to its 
left, and those of B(G) to its right (Fig. 62):

F ig . 62.

Given atomic thermographs for the options of G we compute that for 
G as follows. We adopt notation and conventions similar to those of Chapter 
9, which the reader should consult in conjunction with this one. The atomic 
thermograph has Left and Right boundaries 11(G) and R‘(G) which are com
puted by a rather more complicated rule than the boundaries L,(G) and 
Rt(G) of the ordinary thermograph for a large game G.

Tentatively we define

E =  max R'(GL) -  t, R' =  min E(G*) + t.

We obtain in this way two curves which are our first approximation to the 
Left and Right boundaries. As t increases, the Left curve E ultimately tends 
diagonally rightward (i.e. U decreases), and the Right one diagonally left
ward (R‘ increases). We must examine these curves at the level f =  2. If 
the Left curve is in fact to the left of the Right one at this critical level (i.e. 
E >  R’ at t = 2), then they do indeed define the Left and Right boundaries 
of the atomic thermograph until they meet, from when both boundaries 
coincide in a single vertical line (the mast).

If however the Left curve is to the right of the Right one at the critical level 
(i.e. E < R '\  then the atomic weight is a number, and the atomic thermo
graph consists entirely of a mast at this number. In this case G" is the simplest 
permitted number (i.e. number x  satisfying E < x < R' at t =  2) unless there 
are at least two permitted integers, when G" is that integer determined by the 
remote star criterion. Of course to compare G with the remote stars involves
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comparing it with all stars, and so computing the sets A(G) and B(G), which 
we enter on the diagram as we compute it. Each such set either contains 
almost all or almost no numbers, and it is this dichotomy which settles the 
atomic weight of G in the critical case.

As an example we illustrate (fig. 63) the calculation of the atomic thermo
graph for the game G = {3.| | f , ±ft}. Here the thermographs for the options

Flo. 63.

are supposed given, and the Left and Right curves E and R‘ cross below the 
critical level t = 2  Since 2 is the simplest number between them at this level, 
and is the only integer between them, the atomic weight is 2 and the thermo
graph a mast at 2, with A(G) empty, B(G) full (this is indicated by the words 
“none”, “all” to left and right of the mast).

In Figs 64 and 65 we show the atomic thermographs for the games which 
result when 3 is replaced by T, t*, 4 .f, and 6 .j. In the first two cases there 
are three permitted integers 0, 1, 2  But in the first case we have A = {1}

First case Second case

F ig . 64.
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and in the second A = {0}, while B =  {all} in every case. So in the first case 
we have A(G) empty, B(G) = B full, while in the second case A(G) — B(G) = {0} 
since then A and B have the same minimum. So in the first case the remote 
star criterion gives G" =  2, and in the second case G" =  0.

In the third case we have E = 2, R‘ = 3 at t =  2, and so G" is 2^ by the 
simplest number criterion. In the fourth case E = 4, R' =  3 at t = 2, and 
so the thermograph has a pyramid shape. We should point out that we have 
assigned no meaning to that part of the atomic thermograph corresponding 
to t <  1, but it seems that the calculation is easier if we draw this part never
theless. [For t >  1 the atomic thermograph at level t indicates the Left and 
Right values of the supercooled game G1.]

Atomic weight 2$. Atomic weight {413},
atomic mean weight 3{.

(a) (b)

F i g . 65.

In practice, calculation with atomic weights tends to be easier than the above 
account might suggest, because the additional cooling effect tends to make 
atomic thermographs simpler than ordinary ones for games of roughly the same 
complexity.

Berlekamp and Wolfe have made effective use of another search operation, 
“chilling,” in their theory of Go. They have also shown that this and various 
notions of “heating” and “overheating" arise naturally in Domineering and other 
games. See Mathematical Go: Chilling Gets the Last Point; “Blockbusting and 
Domineering” in the Journal of Combin. Theory Ser. A; and “Introduction to 
Blockbusting and Domineering,” from The Lighter Side of Mathematics.

We conclude with a remark justifying our placing of the superstars in the gamut 
of games.
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T h eo rem  9 9 . Any short all small game G which has atomic weight zero is 
infinitesimal with respect to ft and dominated by some superstar.

Proof. Since multiples of G also have atomic weight zero, they are less than tf. 
Also H  = tf* -  G has atomic weight 1 and therefore exceeds some remote star*n. 
It follows from Norton’s lemma that H > (*n): 1, and this is equivalent to the 
assertion G < *01 ... (n -  1).

The statement refers to tf rather than to T, because the superstars themselves 
are infinitesimal with respect to tf but not with respect to T, since in fact *abc... 
is incomparable with T if 1 appears among the numbers a, b ,c , ....

With this we conclude our investigations into the remarkable world of ups, 
downs, stars, and superstars, observing that we have shown that this small 
world behaves very like the large one, but with some extra subtleties all its 
own. It seems that the theory of atomic weights is about as complete as we 
could expect for games which are naturally compared to T. But perhaps we can 
hope for an extended version of this theory which would enable us to measure 
still smaller games in terms of t 1, T3, and so on. But the curious and compli
cated nature of the atomic weight algorithm suggests that any such theory will 
be very difficult to find. What do we expect to play the role of the remote stars, 
which enter so mysteriously and essentially into our theory?

We leave these questions to others, who will surely find many other prob
lems to puzzle them and wonders to amaze and amuse them in this curious 
world of games. Only a certain feeling of incompleteness prompts us to add a 
final theorem.

T heorem  100. This is the last theorem in this book.

(The proof is obvious.)



Epilogue
Reading this book for the first time in two decades has made me more aware of 

its defects than its merits—it’s perhaps too obvious that it was written in a week! 
However, as a book it was an immediate success: so much so that the London 
Mathematical Society was able to use it to subsidize the other books of their 
Lecture Note Series in which it first appeared.

What has happened since then to the two new subjects it presented—the 
theory of Surreal Numbers and the additive theory of partizan games? Since 
the new edition of Winning Ways will describe the progess in additive game 
theory, I shall here concentrate on the Surreal Numbers, for which the answer is 
that there definitely has been some progress, but not enough. Please make 
some more!

The Surreal Numbers have been the topic of many research papers and a 
number of books. After Donald Knuth’s Surreal Numbers came Harry Gonshor’s 
The Theory o f Surreal Numbers, Norman Alling’s Foundations o f Analysis 
over Surreal Number Fields, and Philip Ehrlich’s Real Numbers, Generaliza
tions o f the Reals, and Theories o f Continua. There have also been several 
special sessions devoted to the Surreal Numbers at meetings of the American 
Mathematical Society.

Most of the authors who have written about them have chosen to define sur
real numbers to be just their sign-sequences. This has the great advantage of 
making equality be just identity rather than an inductively defined relation, and 
also of giving a clear mental picture from the start. However, I think it has 
probably also impeded further progress. Let me explain why.

The greatest delight, and at the same time, the greatest mystery, of the Surreal 
numbers is the amazing way that a few simple “genetic” definitions magically 
create a richly structured Universe out of nothing. Technically, this involves in 
particular the facts that each surreal number is repeatedly redefined, and that the 
functions the definitions produce are independent of form. Surely real progress 
will only come when we understand the deep reasons why these particular defini
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tions have this property? It can hardly be expected to come from an approach in 
which this problem is avoided from the start?

The sign-sequence definition has also the failing that it requires a prior con
struction of the ordinals, which are in ONAG produced as particular cases of the 
surreals. To my mind, this is another symptom of the same problem, because the 
definitions that work universally should automatically render such prior con
structions unnecessary. There is also a peculiar emphasis on the number Vi that is 
totally unnecessary—in ONAG {1/312/3} is just as good a definition of Vi as 
{Oil} is—and that I think serves to obscure the underlying structure.

I believe the real way to make “surreal progress” is to search for more of these 
“genetic” definitions and seek to understand their properties. The rest of this 
Epilogue will describe the few small steps that have been taken in this direction, 
and the large amount that still remains to be done.

The first edition contained the remark that “I do not believe that there is any 
natural definition, for instance, of the function xy for infinite y. Nor does there 
seem to be any particular point in making these definitions." However, soon 
after that appeared, Simon Norton produced a definition of Surreal integration 
that led to an acceptable logarithm, while Martin Kruskal gave an indepen
dent definition of the exponential that turned out to be its inverse. Using 
these, we can of course define the analytic power xy to be exp(y.log(;t)).

Kruskal also showed that there was indeed some “point in making these defi
nitions”. Namely, he hopes to extend virtually all of classical analysis to the 
surreal (and surcomplex) numbers, and then to use this to solve the old problem 
of giving precise meanings to the sums of asymptotic series. We shall take the 
time to explain Kruskal’s program in some detail, since there are difficulties 
which have caused him to postpone publishing his partial results on it.

Hard-line mathematicians have not yet given any general definitions for the 
values of series like the one that appears in Stirling’s formula:

LogOc!) ~xIog(x)-JC + V$.log(2.pLr) + 1/12x+ ... (*).

Here the series on the right converges for no real value of x.
Instead, they use here to mean just that the terms up to and including that 

in 1/jt" provide an approximation to log(x!) that is valid to order o(l/x*).
Kruskal hopes to change all this! He remarks that Stirling’s series does 

converge for infinite surreal x, so that an independent definition of x! would 
make it meaningful to say that (*) did or did not hold with equality for all such 
x. In addition, he hopes to prove a metatheorem to the effect that when series 
like this converge to known functions for all infinite surreal x, then we will run 
into no contradictions by using this to define their exact values for real x.

Most “classical” functions are defined by ordinary differential equations, so 
Kruskal proposes to define what it means to be the solution of such an equation in
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the Surreal Realm, and to prove the necessary existence and uniqueness theorems. 
The archetypical case is the notion

rf> 
f{t)d t

for “reasonable” functions f, but unfortunately a few years ago Kruskal found a 
problem with Norton’s old definition of this.

Since that definition has never been published, and since it neatly illustrates 
several of the problems of finding genetic definitions, I shall briefly describe it here.

We suppose/is the function given by a ‘genetic definition’/ =  {fL I/*}, where 
f L = fL(x; x L, x*) and f R = /*(*; xL, x") will be functions of x  and some Left and 
Right options xL and x* (of which there may be many).

Then the definition of

L
is

Each option in this is obtained by adding an integral of f over a simpler range 
(such as [a, bL] ) to a “dissected integral” off L or /*. The typical such dissected 
integral, say

rc
d L , l ~

is defined to be

[  f L l(t]Co,Ci)dt+ j  f L*(t-,Ci,C'i)dt + . . .+  f  f ^ n (f, Cn—i,Cn)dt,
J c o J c \  J e n - 1

which depends on choices of a dissection D = {c = c0, c,, c2, ..., cn = c'} of [c, c'] 
and of particular Left options f Li, ... f 1* for each subinterval of D. When
integrating over [c(,, cj, all the Left options of t are replaced by cw and all the 
Right ones by cr
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Norton and I showed that this definition correctly integrates polynomials, and 
also integrates 1/x to a satisfactory logarithm that is the functional inverse of 
Kruslcal’s exponential, but there are many problems with the definition in general.

The first of these is that the collections of options that appear in the definition 
are Proper Classes rather than sets. This, however, is not a serious concern, since in 
practice these Classes are dominated by sets.

A bigger worry is that the definition is “intensional”, meaning that it depends 
on the way/is defined, and not just on its values, as do the standard “extensional” 
definitions of classical mathematics. There are examples of functions defined by 
two different definitions that have the same values everywhere, but integrate 
differently! However, these examples are rather artificial, and we hoped eventu
ally to discover inatural restrictions which would make them go away.

Perhaps the most important problem was that we were never able to erect die 
mathematical theory necessary to show that (under suitable conditions) Norton’s 
integral had the desired properties such as linearity, translation invariance, and so 
on. For twenty years we believed that nevertheless the definition was probably 
“correct” in some natural sense, and that these difficulties arose merely because 
we did not understand exactiy which genetic definitions were “legal” to use in it

Kruskal has now made some progress of a rather sad kind by showing that this 
belief was false. Namely, the definition integrates ef over the range [0, co] to the 
wrong answer e®, rather than e“- l ,  independentiy of whatever reasonable genetic 
definition we give for the exponential function.

In the quarter century that has elapsed since the first edition of this book was 
prepared, we have learned that (contrary to my opinion of that time) there are 
indeed natural definitions of xy and some similar functions, but have also learned 
that our impressions about how to enlarge their number (by integration) were 
wrong. I still believe that a correct and natural theory will one day be found, but 
am unwilling to hazard a guess as to when this will be.

It is pleasant to be able to end this Epilogue on a more positive note. Jacob 
Lurie, who as a high school student won the Westinghouse competition with an 
essay about the Surreal numbers, has very recently proved my conjecture that the 
Group of all games is the universally embedding partially ordered Abelian Group. 
I am pleased to be able to congratulate him for the second time!

John Conway 
12 October 2000
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G a m e  P ro n u n c ia t io n

0  n o u g h t or ze ro
1 one
2 tw o
3 th re e
} h a lf
J  q u a r te r
I  th re e -q u a r te rs
1} o n e -a n d -a -h a lf
- 1  m in u s -o n e
— 2 m in u s -tw o
—} m in u s -h a lf
. . .  e tc .
co o m eg a
co +  1 o m e g a -p lu s -o n e
co .2 o m e g a - tim e s - tw o
co2 o m e g a -sq u a re d
a  (th e  g e n e ra l o rd in a l)
co -  1 o m eg a -le s s-o n e
co
— h a lf-o m e g a

yja> ro o t-o m e g a

— o m e g ’th
co

— tw o -o m e g ’th s
co

—  h a lf-o m e g ’th
2co

Definition

m
{0|}
{1 I } ~  {o» 1 1 } =  i +  i 
{ 2 1} =  {0 ,1 ,2|}  =  1 +  1 +  1

{ 0 | 1}

( 0 |i )  
{ ill}
{ 1 12>

{|0} 
(1 -1 }
{ - 1 10}

{0 ,1 ,2 ,3 ,... | }
{co | } =  { 0 , 1 , . . . ,  co | }
{0, 1 , . . .  , CO, CO +  1 , . . . |  } =  CO +  CO
(0 ,1 ,. . . ,  co,. . . ,  co2,. . . ,  eo3,. . .  | } 
{ ...,/? ,...(/?  < a)| }
{ 0 , 1 , 2 , . . .  | co}

{ 0 , 1 , . . .  |co ,co  -  1 , . . . }  

{ 0 , l , . . . | c o , | , . . . }

{O il,} ,...}

{=1 >•*■■•}

{ < }
229
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Game Pronunciation Definition
o f omega-to-the-x {0, m * L | ra)**} (r positive real).
X (the general number) {simpler numbers <  x | simpler 

numbers >  x}
— X minus x { - x * | - x ^ }
x  +  y x plus y {x1 +  y ,x  + /  Ix* +  y,x +  y*}
xy x  times y {xLy + xy1- -  x V ', x*y +  xy* -x*y*|

|x^y +  xy* -  x̂ "y*, x*y +  xy1 -  x * / -}
x:y x  ordinal-sum y {x^, x ry^x* , x:y*}

The definitions of these operations apply also to other games. For the
operation of inversion (I/*) see Chapter 1.

0 zero game {|}  = *0
* star (0 10} = *1
*2 star-two {0, * 10, *}
*n star-n {*0, * 1 ,..., *(n -  1) | *0, *1,.. 

*(n -  1)}
•a star-a { * M  <  a) | */?(/!<*)}
*abc... (typical superstar) t*  +  {*a, *b, *c,. . .  | *0, *1, *2,...}
T up {0|*}
t* up-star {o, * | o} =  r +  *
t*« up-star-n {0|*(n +  2 1)} = t  +  *n
ft double-up {0|T*} =  T +  t
ft* double-up-star {0| T} = t  +  t  +  *
i down {*|0> = -T
11 double-down U*|o} = - f t
T2 up-two {T1 *} =  t  +  T2
T3 up-three {T2|*} = T +  t 2 +  t 3
T2* up-two-star (0, T-10} = T2 + .
Ti up-half {°|T>*}

up-half-star {o, * | o, t*} =  +  *
U up-x {*, fx1,1 *, tx*} = {* IX1 *} for 

numbers x
u * up-x-star {0,txI-*|0) tx*.} =  {01 x 10} 

= fx +  *
ix down-x - ( tx )  (etc.).
ftx double-up-x ( |x | t * )  = T +  tx fo rx  2s 1.
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Game Pronunciation Definition
H double-up-half {o|T*,ft} >  T +  Ti (etc-)
Dx-,y double-up x;y {o | T**. M
t 2 up-second {o|A*}
t 3 up-third
Aa down-second {T* 10} = -(T 2) (etc.)
T* up-xth by the formula = t On (i — n
x.T = X x-fold up {x1, +  ft * | x* +11 *} (x not integral)
* -T = * starfold up ( H H
T»+ up-n-plus { K  + Tf»+,oU } (a + b = n)
r + up-nth-plus t i+ + 12+ +  ••• +  r + =  t« +
T2+ up-second-plus {T IW

up-star-n
semi-up
sesqui-up

{01 *(» + 2 1)} 
{ft* 14.*} 
!(3-T)*t*j

1* semi-up-star {ft)l>
•
2 semi-star {*, t  |i* , 0}

G (general game) {A, B , C , . . . \ D , E , F , . . if Left has 
moves to A ,B ,C ,.. .  and Right to 
D ,E ,F .......

GL Left option one of A, B, C, . . . '  
in above

► so G =  {Gl | G*}G* Right option one of D, E, F, . . .  
in above _

A | B A slash B abbreviates {A | B}
set A, B ,. . . abbreviates {A,B, . ■ ■\A,B, . . . }

± x plus or minus X abbreviates {X | - X}
±(X,Y, . . . ) (similarly) abbreviates {X, Y, ..I  - X , - Y . . . }
{Gi |A'|GJ*} G-sum-x the function f {X)  defined by

or G:X f ( X ) =  {GL, f ( X L) \ G\ f ( X* ) }
+  x tiny-x {01 {01 —x}}

A\\B\C A slashes B slash C abbreviates {A 1 {B 1 C}} (etc.)
+  2 tiny-two (0 1 {0 j — 2}}
00 00 {R|{R|R}}
±  00 plus or minus oo {R|R} =  {oo | -  oo }

8 II 8 O twice infinity {R||R|0}
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Game Pronunciation Definition
oo-1 infiniteth {1|R+ ||R + |||R + }
t ( ± n up plus-or-minus one {t.*!i.*}
T2+* up two-plus star {0*10}
T2+* up second-plus star {0,1*11}
T2T2 up two-seconds {0 |t2*}
T2f2. up two-seconds star {o|T2}
T2* up-second star {0,*|i}
u 2 up down-second {#*KT}
n»* up down-second star { 0 | o > }

REFERENCES

Not all of these are mentioned in the text, the others being on related subjects and 
particular games. The reader should be warned that the name “Theory of Games” 
usually refers to a theory of a different kind used in economics and political decision
making. The series Contributions to the Theory of Games, edited by Tucker and others, 
in the Princeton Annals of Mathematics Studies, nos 24, 28, 39, 40 contains many 
papers on this subject, and the fourth volume has a large bibliography.

1. G  L. Bouton, Nim, a game with a complete mathematical theory, Ann. Math., 
Princeton (2), 3(1902), 35-39.

2. J. H. Conway, All games bright and beautiful, The University of Calgary Math. 
Research Paper #295. October 1975.

3. J. H. Conway, All numbers, great and small, The Univ. of Calgary Math. Research 
Paper # 149, February, 1972.

4. Aviezri S. Fraenkel, Combinatorial games with an annihilation rule, Proc. A.M.S. 
Symp. App. Math, 20(1974), 87-91.

5. David Gale, A curious nim-type game, Amer. Math. Monthly, 81(1974), 876-879.
6. Solomon W. Golomb, A mathematical investigation of games of “take-away” , J. 

Combinatorial Theory, 1(1966), 443-458.
7. P. M. Grundy, Mathematics and games, Eureka, 2(1939), 6-8.
8. P. M. Grundy and CA.B. Smith, Disjunctive games with the last player losing, Proc. 

Camb. Philos, Soc, 52(1956), 527-533.
9. R. K. Guy and C A .B . Smith. The G-values for various games, Proc. Cambridge 

Philos. Soc, 52(1956X 514-526.
10. Olof Hanner, Mean play of sums of positional games. Pacific J. M ath, 9(1959), 

81-99; M.R. 21 #3277.
11. P. G. Hinman, Finite termination games with tie, Israel J. M ath, 12(1972), 17-22.
12. John G  Holladay, Cartesian products of termination games. Contributions to the 

theory of games, vol 3, 189-200. #39 Ann. Math. Stud. Princeton. M.R. 20# 2236, 
1957.

13. John G Holladay, Matrix Nim, Amer. Math. Monthly, 65(1958), 107-109; M.R. 
20#4812.

14. Ja. G. Kljuiin, Equivalence theorems for general positional games (Russian) in 
Advances in Game Theory (Proc. 2nd All-Union Conf. on Game Theory, Vilnius, 
197U 209-211 Zdat “Mintis” Vilnius 1973.

15. Donald E. Knuth, Surreal numbers, Addison-Wesley, 1974.



APPENDIX 23 3

16. John Milnor, Sums of positional games, Annals of Math. Study § 28 (Kuhn & 
Tucker), Princeton 1953, 291-301.

17. David Singmaster, Almost all games are first person games,
18. C  A. B. Smith, Graphs and composite games, J. Combinatorial Theory, 1(1966X 

51-81.
19. R. P. Sprague, Uber mathematische Kampfspiele, Tohoku Math. J ,  41(1935-6), 

438-444; ZbL 13, 290.
20.  ■, Recreation in mathematics (trans. T. H. O’Beirne) Blackie, 1963, #24 Odd

is the winner, pp. 18,
21. H. Steinhaus, Definitions for a theory of games and pursuit, Mysl. Akad. Lwdw 1, 

# 1(1925), 13-14; reprinted in Naval Res. Logist Q uart 7(1960), 105-108.

The principal books and papers published about Surreal Numbers since the first 
edition of On Numbers and Games are:

Berarducci, Alessandro: Factorization in generalized power series. Trans. Am. Math. Soc. 
352, No.2,553-577 (2000).

Beyer, W.A. and Louck, J.D.: Transfinite function iteration and surreal numbers. Adv. 
Appl. Math. 18, No.3,333-350, Art. No.AM960513 (1997).

Conway, John Horton and Guy, Richard K.: The book o f numbers. Berlin: Springer- 
Verlag. 1996.

Ehrlich, Philip (ed.): Real numbers, generalizations o f the reals, and theories ofcontinua. 
Synthese Library. 242. Dordrecht: Kluwer Academic Publishers. 1994.

Gardner, Martin: Penrose tiles to trapdoor ciphers... and the return o f Dr. Matrix. Rev. ed. 
Washington, DC: The Mathematical Association of America. 1997.

Gonshor, Harry: An Introduction to the theory o f surreal numbers, Lond. Math. Soc. Lect. 
Note Ser. 110, Cambridge University Press, 1986 (Zbl 595.12017).

Lemire, Denis: Decompositions successives de la forme normale d ’un surreel et 
generalisation des z-nombres. Ann. Sci. Math. Que. 21, No.2,133-146 (1997).

Louck, James D.: Conway numbers and iteration theory. Adv. Appl. Math. 18, No.2,181- 
215 (1997).

Lurie, Jacob: The effective content o f surreal algebra. J. Symb. Log. 63, No.2, 337-371 
(1998).



http://taylorandfrancis.com


Index
He writes indexes to perfection.

Oliver Goldsmith. Citizen o f the World ( letter 29)

Above Class, 218 
addition 

of games, 74, et seq 
of numbers, 5 
natural or maximal, 28 
ordinal, 31, 88 
and order, properties of, 18 
simplest, in On, 30 
in On2, 50 
properties of, 17 
properties of, in On2, 54 

algebra and analysis in No, 39 
algebraic closure of No(i), 42 
ALL rule, 173
all small games, the, 101, 214 
All the King’s Horses, 183, 185 
ambidextrous strong man, the, 168 
ambivalent nim-heaps, 146 
amusement, Author’s, 44 
analysis 

in No, 39, 43 
non-standard, 44 

analytic functions in No, 43 
analytic properties o f® , 84 
ancestors conjecture, 210 
animating functions, 155 

poles of, 156 
Nim of, 156 
Welt of, 157,158 

Anne-Louise, 75 
approximations of numbers, 29 
Archimedes, 98 
Arthur, 71, 173 
Artin, Emil, 42
atomic mass thermography, 220 
atomic weights, 219 
Author, amusement of, 231

Bach, Clive, 22, 56 
balanced game, 207 
beanstalks, infinite, 89 
behaviour of misfire nim-heaps, 139 
Below Class, 218
Berlekamp, Elwyn, R., v, 31, 90,101, 

108, 121, 129, 165, 197, 223 
Bertha, 71, 173
bird, girl with umbrella and, 167 
birthdays, 30, 64 
Borden, Lizzie, 165 
boundaries of thermograph, 105 
Bouton, C. L. 228 
bridge, the lovers’, 169 
de Bruijn, N. G. J., 131 
Bynum, Jim, 199 
Bynum’s game, 199, 201-204 

the twisted version, 199 
Bynumbers, 202

cancellation theorem for misfire games, 
150

canonical forms 
for short games (simplest form), 111 
for long games?, 209 
for misfire games (reduced form), 138, 

149
Cantor, Georg, 4 

contrasted with Dedekind, 13 
Cantor Normal Form, 28 
Cardinal numbers, infinite, 3 

of proper Classes, 43 
Carroll, Lewis, 81 
Chess players, professional, 75, 135 
Christie, Mike, 202 
Class, proper, 27, 38 

cardinal number of, 43

235
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Class—continued
Above and Below, 218 

CLASS, IMPROPER, 38 
COL, game of, 91 

dictionary for, 93-95 
Cohn, Paul M„ 33, 40 
commensurate numbers, 31 
compounds of games, 173 
Coleridge, Samuel T., 97 
confusion 

of games, 79 
interval, 97 

conjecture, 
ancestors, 210 
Grundy’s, on his game, 142 
Grundy’s(?), onmisire games, 139 
refinement property, 46 
on Gl < G < G*, 209 

conjunctive compounds, 174 
who wins?, 175 
continued, 174,176 

construction 
Malcev-Neumann, 33, 40 
of games, 78 
of numbers, 4 

continued conjunctive compound; who 
wins?, 176 

continued exponentials 
of irreducible numbers, 34 
of Gaps, 37 

continued fraction(s), 47, 83 
of n, 85 

contorted fractions, 82 
Conway, 135,228 
cooled game, 103 
cooling,

equality, 107 
function, 103 
games, 102, 108 
and supercooling, 218 

Cutcake, 200

Dad, my, 79 
day zero, 10 

day a), 12, 25 
Dedekind, Richard 

on numbers, 3 
sections, 29, 91 
sections in No, 37

definitions, inductive, 5, 64 
Deletions, Digital, 190 
Delian Problem, resolved, 132 
Digital Deletions, 190 
DIM, game of, 130
diminished disjunctive compound, 174, 

178
diminishing rectangles, 132 
disjunctive compound, 173, 174 

sums, 74, 177
of misere games, 136-152, 178 

divine games, 150 
divisible integers, 46 
division, properties of, 20 

in On2, 56, 57 
Dollar, Silver, game with, 130 

game without, 123 
dominated options (moves), 110 
Dominoes, game of, 74, 114-121 

dictionary for, 119-121 
Dry den, John, 153 
dyadic rationals, 24

embedding property of No, 42 
empty set, 7, 16 
epsilon numbers, 34, 135 
equality, 

an identity, 5, 15 
and order, properties of, 16 
cooling, 107 
head-shrinking, 90 
of numbers, 4 
of games, 15, 76 
upstart, 77 

equation, Pellian, 47 
Estate, Hackenbush, 165 

High, 153 
Euclid or Eudoxus, 3 
even alteration theory, 160 

and odd misire games, 151 
expansion, sign-, 30, 36 
explosive nodes and edges, 119 
exponential function in No, 43 
exponentials, continued, 34, 37 
extension theorems in On2, simplest, 

56-59
extraverted and introverted games, 150 
fairly small and fairly large numbers, 212 
Farcy fractions, 82
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Field of numbers, 4, 22 
finite order games, 207 
first transcendental, numbers below, 59 
Fischer, Bobby, 75 
followers (=  options) 
foreclosed game, 178 

Grundy number, 179 
form

and value of game, 76 
canonical?, 209 
Cantor’s Normal, 28 
Normal, for general number, 32 
simplest, for short games, 111 
simplest, for mis&re games, 149 

fractions 
Farey, 82 
continued, 47, 83 
contorted, 82 

Fraenkel, Aviezri. 134,228 
function, 

animating, 155 
cooling, 103 
exponential, 43 
outcome, 73, 147 
remoteness, 176 
sop and wop, 189 
supercooling, 218 
suspense, 177 
Welter’s, 157
a ,  84

fuzzy game, 73

game(s) 
addition of, 74 
all small, 101, 214 
atomic weight of, 219 
balanced, 207 
Bynum’s, etc, 199 
COL, 91
compounds of, 74, 173 
construction of, 78 
cooling of, 102-108 
Cutcake, 200 
Digital Deletions, 190 
divine, 150
Dominoes, 74, 114-121 
even, odd, and prime, 151 
extraverted and introverted, 150 
fairly large and small, 212

form and value of, 76 
fuzzy, 73 
gamut of, 212 
Grundy’s, 125, 177 
Hackenbush, etc., 86, 165, 188 
halving arbitrary, 198 
impartial, 122-135 
incentive of, 207 
infinite, 77, 214
infinitesimal, etc., 100, 117, 214 
in Gaps, 212 
Kayles, 127, 145
Left and Right sections and values, 97, 

98
like and linked, 147 
long, 97
mean values, etc., 101
multiples and submultiples of, 207
negative, 73
negative of, 75
Nim, 122
Northcott’s, 131
octal, 128, 129
of odd order, 207
options of, 71
order between, 15, 73, 78
ordinal addition of, 192
outcome of, etc., 73, 147
partizan, 78, 209
playing several at once, 71, 173
positions of, 71
positive, 73
remoteness of, 176
Rims and Rayles, 131
short, 97
simplifying, etc., 109 
small, etc., 100 
SNORT, 91, 96 
stopping position of, 99 
submultiples of, 207 
sums of, 73
suspense number of, 177 
tame, 145,178 
temperature of, 107 
thermograph of, 104 
Traffic Jams, 135 
values and form of, 76 
values, Left, Right, mean, 97 
very small and large, 212 
Welter’s, 153
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games—continued 
zero, 76 
0, 1, -  1, *, 72 
i  t ,  76, 77 

gamut of games, 212 
Gaps, 

in number line, 37 
games in, 212 

garden, Hackenbush, 166 
general number, structure of, 29-38 
girl with unbrella and bird, 167 
Goldsmith, Oliver, 23, 64, 231 
Group 

of numbers, 18 
of games, 78 

Grundy, P. M., 228 
conjectures, 139, 142 
game, 129, 142 
principle, 138
theory, with Sprague, 122, 124 

Grundy numbers (values), 125, 177 
of Digital Deletions, 191 
foreclosed, 179 
of Grundy’s game, 129, 142 
of Hackenbush, 171 
of Kayles, 128 
mi sire, 140, 144-145 
of octal games, 128-129 
of restless games, 146-147 
of Welter’s game, 153 

Guy, Richard K., 128,129, 196, 228

Hackenbush 
Hotchpotch, 188 
restrained, 86 
theorem, 171 
unrestrained, 165 

Hanner, Olof, 101,228 
Horses, All the king’s, etc., 173, et seq.

ice
thin, treading on, 37 
mast-high, 97 

identity and equality, 5, 15 
incentive, 207 
inductive definitions 

for games, 78 
for numbers, 4, 5, 64

of operations in On2, 53 
inductive proofs, 5, 64 
infinite 

beanstalks, 89 
cardinal numbers, 3 
games, 77,214 
Nim, 124 
numbers, 12 
sums, 39 

infinitesimal 
games, 100, 117, 214 
numbers, 12
with respect to ft , 214, 216 

Infinity (oo), 37, 213 
integers 

as games, 81 
omnific, 45 

inversion 
of numbers, 20 
in On2, 56
of Welter function, 163 

irreducible numbers, 34 
ish, 117

Jams, Traffic, 135 
Johnstone, Peter. 135, 202

Kayles, 127, 145 
Kenyon, J. C., 129 
Khayyam, Omar, 1, 69 
Knuth, Donald, vi, 228 
Kuratowski, 65
large and small games and numbers, 212

Left and Right 
as busy men, 71
boundaries of thermograph, 105 
options, 16, 71 
sections and values, 97 

legal moves, 71, 72 
length 4 mi si re games, 141 
like and linked games, 147 
Lizzie Borden, 165
Llanfairpwllgwyngyllgogerychwymd- 

robwllllantysiliogogogoch, 135
long 

games, 97 
rule, 173
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Mach’s principle, 218 
Malcev-Neumann construction, 33,40 
map, o>-, 31
masses, atomic (etc.), 219
mast, 97.105,221
mate, 147,154
maximal sum and product, 28
mean value, 101
mean weight, atomic, 223
mex, 124, 140
Milnor, John, 101
Minkowski, 84
mis£re

games, theory of, 136-152 
games, counting, 140 
games, subtraction of, 150 
Grundy numbers, 140, 144-145 
Nim-heaps, behaviour of, 139 
outcome function, 138, 147 
play rule, 136 
reduced form, 149
reduced games of length up to 4, 141 

Money, my Dad’s, 79 
moneybag, 130 
Moore’s Nimt, 181 
move 

legal, 71-72 
reversible, 110, 137 

multiples and submultiples 
of T, 207
of general games, 214 

multiplication 
of numbers, 5, 18 
in On2, 52, 55 
of games, 207

natural sum and product, 28 
Neumann, J. von, 4, 43, 65 
negative 

games, 73 
of games, 75 
of numbers, 17
numbers, Nim-addition of, 154 

next transcendental, problem of, 62 
Nim 

-addition, 51, 125
-addition of negative numbers, 154 
of an animating function, 156

lovers, a n d  th e ir  bridge, 169 game of, 122
-heaps, misire behaviour of, 139 
-heaps, ambivalent, 146 
infinite, 124 
-multiplication, 52 
-sums, 125 
Supernim, 215 

No (the Class of all numbers) 
construction of, 4 
definitions of operations, etc, 5 
Field property, 4, 22, 43 
real-closed, 42 

non-standard analysis, 44 
normal play rule, 71, 174 
normal form 

Cantor’s, for ordinals, 28 
for general number, 32 
for gap, 37
and sign-expansion, 36 

Northcott, D. G., and his game, 131 
Norton, Simon, 45, 91, 101, 151, 207, 

217
his lemma, 210 

number(s) 
addition of, 5, 17 
approximations for, 29 
cardinal, 3 
commensurate, 31 
epsilon (s), 34, 135 
equality and identity of, 5, 15 
fairly large and small, 212 
and games, 97, el seq.
Grundy, 125 
infinite, 3, 12, 212 
infinitesimal, 12, 212 
irreducible, 33 
of misere games, 140 
mis£re Grundy, 144-145 
multiplication of, 5, 18 
normal form for, 32 
order among, 4, 16 
ordinal, 27, 125 
ordinary sized, 212 
reducible, 33—34 
sign-expansions of, 30, 36 
structure of general, 29-38 
very large and small, 212 

nth roots 
in No, 40 
in On2, 56, 60
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O’Beime, Tom, 165 
octal games, 128-129 
October 17, Theorem of, 201 
odd and even games, 151 
On, 28, 37 
1/On, 37 
On2, 50
one-line proofs, 17, 101 
One of the King’s Horses, 183, 185 
ONE rule, 173 
options 

Left, Right, 16 
dominated, 110 
reversible, 110, 137 

order
among numbers, 4, 16 
among games, 15, 73, 78 
and addition, properties of, 18 
games of finite, 207 

ordinal addition, 88 
ordinal numbers (ordinals) 

embedding in No, 27 
operations on, 28 
below first transcendental, 59 
normal form for, 28 

ordinary sized numbers, 212 
outcome classes, 73, 147 
Oz, 45

Pellian equation, 47 
Pg. 78, 209
pictures, in Hackenbush, 86, 165 

weight of, 166 
play

of several games at once, 71, 173 
misire rule, 136, 174 
normal rule, 71, 174 

players Left and Right, 71 
poles of animating function, 156 
polynomials, roots in No, 41 

in Ob2, 58 
Pope, Alexander, 15 
positions 

Nim-sums of, 126 
of games, 71 
starting, 72 
stopping, 99 

powers 
of numbers?, 43 
of f. 195

of co, 31 
PRIM, 129 
prime

games (in the misere theory), 151 
numbers, 46 
partition, 151 

principle 
Grundy’s, 137 
Mach’s, 218 

problem, Delian, 132 
proofs, 1-line, 17, 101 
proper Gasses, 27, 138

Quarrel of Universe, 64-67, 69

rational numbers, 23 
real numbers 

logical theory of, 25-27 
embedding in No, 24 

rectangles 
diminishing, 132 
shrinking, 195 

reduced form of misire game, 149 
games of length up to 4,141 

refinement property, 46 
remote stars, 218
remoteness function of game (Steinhaus), 

176
restive and restless games, 145 
restrained Hackenbush, 86 
reversible options, 110, 137 
Robinson, Abraham, 44 
roots 

square, in No, 22 
square, in On2, 56 
nth, 40
of odd degree polynomials, 41 

rules for play 
long, short, SOME, ALL, ONE, 173 
mi sire, 136, 174 
normal, 71, 174

selective compound, 174 
shortened, 174, 175 
who wins?, 175 

se m i-s ta ro r-J '* ) 
semi-up (f or * t ) ,  199
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sesqui-up, 199
several games at once, tactical summary,

179
short games, 97 

of odd order?, 207 
short rule, 173
shortened selective compound, 174 
shrinking rectangles, 195 
sign-expansions 

for numbers, 30, 36 
for gaps, 37 

Silver Dollar game, 123, 130 
simplest form of short game, 111 
simplicity theorem, 10, 23, 81 
simplifying games, 109 
simultaneous displays, 73 
small games or numbers, 100 

very, fairly, 212 
all, 101 

small world, theory of, 217 
Smith, Cedric A. B., 128, 133, 139, 175,

180
SNORT, 91, 96
Some of the King’s Horses, 183, 184 
sop and wop functions, 189 
Spassky, Boris, 75 
Sprague, Roland, 125 
Sprague-Grundy theory, 122, 125 
spinster, 154, 172 
square roots 

in No, 22 ,
in On2, 56 
of co, 13 

star (*), 72 
stars

Nim-heaps (*»), 122 
remote, 218 

starting position, 72 
stopping positions, 99 
strong man, ambidextrous, 168 
subtraction 

of numbers, 5, 17 
of misere games, 150 

sums 
disjunctive, 74, 177 
of games, 74 
infinite, 39
maximal or natural, 28 
Nim-, 51,125,154
of numbers, 5, 17

ordinal, 31, 88 
supercooling function, 218 
supemim, 215 
superstars, 215-217 

their translation invariance, 215 
surd numbers, 39, 84 
suspense numbers, 177

tactics for playing several games at once, 
179

tame games, 145, 178 
temperature 

of game, 107 
theory, 101 
Left and Right, 107 

Theorem of 17 October (1972), 201 
theory

of Grundy and Sprague, 122 
of misere games, 136-152 
of real numbers, 25-27 
Smith’s, for infinite games, 133 
of small world, 217 
temperature, 101 
Welter’s, 153, et seq. 

thermograph 
atomic mass, 220 
boundaries of, 105 
of game, 104 

Traffic Jams, 135 
transcendental

ordinals below first, 59 
problem of next, 62 

translation invariance (property) 
of games other than numbers, 112 
of superstars, 215 

tree of numbers, 11, 31 
Tritter, Alan, 129 
tromino game, 196 
twisted form of Bynum’s game, 209 
umbrella, girl with, and bird, 167

Ug,78, 209 
Universe 

of sets, 38 
Quarrel of, 69 

University, 38 
universally embedding, 42 
unrestrained Hackenbush, 165
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up (T), 77, 188 
definition of, 77
multiples and submultiples of, 198 
powers of, 195 

up-x (tx), 194 •
upstart equality, 77

value
and form of game, 76 
Left, Right, and mean, 97 

very large and small numbers, 212 
Vout, Colin, 91

Waring’s problem, 46

weights, 
atomic, 219 
mean, 223
of Hackenbush picture, 166 

Welter, C. P., 153 
his game, 153
Grundy numbers for, 153, 158 

Welter’s function (Welt), 158 
as norm of animating function, 157, 

158
inversion of, 163 

wop and sop functions. 189

Zermelo-Fraenkel set theory, 64 
zero game, 76
zig-zag domino positions, 117
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